apparmor/parser/libapparmor_re/regexp.y
Steve Beattie 030d97e3f1 Merge from r1430: fix for LP: #599450
Changes the table resizing so that there is always sufficient high
entries in the table, preventing bounds violations from occurring.

Nominated-by: John Johansen <john.johansen@canonical.com>
Acked-By: Steve Beattie <sbeattie@ubuntu.com>
2010-07-24 16:16:14 +02:00

2800 lines
71 KiB
Text

/*
* regexp.y -- Regular Expression Matcher Generator
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
*
* Implementation based on the Lexical Analysis chapter of:
* Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman:
* Compilers: Principles, Techniques, and Tools (The "Dragon Book"),
* Addison-Wesley, 1986.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* See http://www.gnu.org for more details.
*/
%{
/* #define DEBUG_TREE */
#include <list>
#include <vector>
#include <set>
#include <map>
#include <ostream>
#include <iostream>
#include <fstream>
using namespace std;
typedef unsigned char uchar;
typedef set<uchar> Chars;
ostream& operator<<(ostream& os, uchar c);
/* Compute the union of two sets. */
template<class T>
set<T> operator+(const set<T>& a, const set<T>& b)
{
set<T> c(a);
c.insert(b.begin(), b.end());
return c;
}
/**
* A DFA state is a set of important nodes in the syntax tree. This
* includes AcceptNodes, which indicate that when a match ends in a
* particular state, the regular expressions that the AcceptNode
* belongs to match.
*/
class ImportantNode;
typedef set <ImportantNode *> State;
/**
* Out-edges from a state to another: we store the follow-state
* for each input character that is not a default match in
* cases (i.e., following a CharNode or CharSetNode), and default
* matches in otherwise as well as in all matching explicit cases
* (i.e., following an AnyCharNode or NotCharSetNode). This avoids
* enumerating all the explicit tranitions for default matches.
*/
typedef struct Cases {
typedef map<uchar, State *>::iterator iterator;
iterator begin() { return cases.begin(); }
iterator end() { return cases.end(); }
Cases() : otherwise(0) { }
map<uchar, State *> cases;
State *otherwise;
} Cases;
/* An abstract node in the syntax tree. */
class Node {
public:
Node() :
nullable(false), refcount(1) { child[0] = child[1] = 0; }
Node(Node *left) :
nullable(false), refcount(1) { child[0] = left; child[1] = 0; }
Node(Node *left, Node *right) :
nullable(false), refcount(1) { child[0] = left; child[1] = right; }
virtual ~Node()
{
if (child[0])
child[0]->release();
if (child[1])
child[1]->release();
}
/**
* See the "Dragon Book" for an explanation of nullable, firstpos,
* lastpos, and followpos.
*/
virtual void compute_nullable() { }
virtual void compute_firstpos() = 0;
virtual void compute_lastpos() = 0;
virtual void compute_followpos() { }
virtual int eq(Node *other) = 0;
virtual ostream& dump(ostream& os) = 0;
bool nullable;
State firstpos, lastpos, followpos;
/* child 0 is left, child 1 is right */
Node *child[2];
unsigned int label; /* unique number for debug etc */
/**
* We need reference counting for AcceptNodes: sharing AcceptNodes
* avoids introducing duplicate States with identical accept values.
*/
unsigned int refcount;
Node *dup(void)
{
refcount++;
return this;
}
void release(void) {
if (--refcount == 0) {
delete this;
}
}
};
/* Match nothing (//). */
class EpsNode : public Node {
public:
EpsNode()
{
nullable = true;
}
void compute_firstpos()
{
}
void compute_lastpos()
{
}
int eq(Node *other) {
if (dynamic_cast<EpsNode *>(other))
return 1;
return 0;
}
ostream& dump(ostream& os)
{
return os << "[]";
}
};
/**
* Leaf nodes in the syntax tree are important to us: they describe the
* characters that the regular expression matches. We also consider
* AcceptNodes import: they indicate when a regular expression matches.
*/
class ImportantNode : public Node {
public:
ImportantNode() { }
void compute_firstpos()
{
firstpos.insert(this);
}
void compute_lastpos() {
lastpos.insert(this);
}
virtual void follow(Cases& cases) = 0;
};
/* Match one specific character (/c/). */
class CharNode : public ImportantNode {
public:
CharNode(uchar c) : c(c) { }
void follow(Cases& cases)
{
State **x = &cases.cases[c];
if (!*x) {
if (cases.otherwise)
*x = new State(*cases.otherwise);
else
*x = new State;
}
(*x)->insert(followpos.begin(), followpos.end());
}
int eq(Node *other) {
CharNode *o = dynamic_cast<CharNode *>(other);
if (o) {
return c == o->c;
}
return 0;
}
ostream& dump(ostream& os)
{
return os << c;
}
uchar c;
};
/* Match a set of characters (/[abc]/). */
class CharSetNode : public ImportantNode {
public:
CharSetNode(Chars& chars) : chars(chars) { }
void follow(Cases& cases)
{
for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
State **x = &cases.cases[*i];
if (!*x) {
if (cases.otherwise)
*x = new State(*cases.otherwise);
else
*x = new State;
}
(*x)->insert(followpos.begin(), followpos.end());
}
}
int eq(Node *other) {
CharSetNode *o = dynamic_cast<CharSetNode *>(other);
if (!o || chars.size() != o->chars.size())
return 0;
for (Chars::iterator i = chars.begin(), j = o->chars.begin();
i != chars.end() && j != o->chars.end();
i++, j++) {
if (*i != *j)
return 0;
}
return 1;
}
ostream& dump(ostream& os)
{
os << '[';
for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
os << *i;
return os << ']';
}
Chars chars;
};
/* Match all except one character (/[^abc]/). */
class NotCharSetNode : public ImportantNode {
public:
NotCharSetNode(Chars& chars) : chars(chars) { }
void follow(Cases& cases)
{
if (!cases.otherwise)
cases.otherwise = new State;
for (Chars::iterator j = chars.begin(); j != chars.end(); j++) {
State **x = &cases.cases[*j];
if (!*x)
*x = new State(*cases.otherwise);
}
/**
* Note: Add to the nonmatching characters after copying away the
* old otherwise state for the matching characters.
*/
cases.otherwise->insert(followpos.begin(), followpos.end());
for (Cases::iterator i = cases.begin(); i != cases.end(); i++) {
if (chars.find(i->first) == chars.end())
i->second->insert(followpos.begin(), followpos.end());
}
}
int eq(Node *other) {
NotCharSetNode *o = dynamic_cast<NotCharSetNode *>(other);
if (!o || chars.size() != o->chars.size())
return 0;
for (Chars::iterator i = chars.begin(), j = o->chars.begin();
i != chars.end() && j != o->chars.end();
i++, j++) {
if (*i != *j)
return 0;
}
return 1;
}
ostream& dump(ostream& os)
{
os << "[^";
for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
os << *i;
return os << ']';
}
Chars chars;
};
/* Match any character (/./). */
class AnyCharNode : public ImportantNode {
public:
AnyCharNode() { }
void follow(Cases& cases)
{
if (!cases.otherwise)
cases.otherwise = new State;
cases.otherwise->insert(followpos.begin(), followpos.end());
for (Cases::iterator i = cases.begin(); i != cases.end(); i++)
i->second->insert(followpos.begin(), followpos.end());
}
int eq(Node *other) {
if (dynamic_cast<AnyCharNode *>(other))
return 1;
return 0;
}
ostream& dump(ostream& os) {
return os << ".";
}
};
/**
* Indicate that a regular expression matches. An AcceptNode itself
* doesn't match anything, so it will never generate any transitions.
*/
class AcceptNode : public ImportantNode {
public:
AcceptNode() {}
void follow(Cases& cases)
{
/* Nothing to follow. */
}
/* requires accept nodes to be common by pointer */
int eq(Node *other) {
if (dynamic_cast<AcceptNode *>(other))
return (this == other);
return 0;
}
};
/* Match a pair of consecutive nodes. */
class CatNode : public Node {
public:
CatNode(Node *left, Node *right) :
Node(left, right) { }
void compute_nullable()
{
nullable = child[0]->nullable && child[1]->nullable;
}
void compute_firstpos()
{
if (child[0]->nullable)
firstpos = child[0]->firstpos + child[1]->firstpos;
else
firstpos = child[0]->firstpos;
}
void compute_lastpos()
{
if (child[1]->nullable)
lastpos = child[0]->lastpos + child[1]->lastpos;
else
lastpos = child[1]->lastpos;
}
void compute_followpos()
{
State from = child[0]->lastpos, to = child[1]->firstpos;
for(State::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other) {
if (dynamic_cast<CatNode *>(other)) {
if (!child[0]->eq(other->child[0]))
return 0;
return child[1]->eq(other->child[1]);
}
return 0;
}
ostream& dump(ostream& os)
{
child[0]->dump(os);
child[1]->dump(os);
return os;
//return os << ' ';
}
};
/* Match a node zero or more times. (This is a unary operator.) */
class StarNode : public Node {
public:
StarNode(Node *left) :
Node(left)
{
nullable = true;
}
void compute_firstpos()
{
firstpos = child[0]->firstpos;
}
void compute_lastpos()
{
lastpos = child[0]->lastpos;
}
void compute_followpos()
{
State from = child[0]->lastpos, to = child[0]->firstpos;
for(State::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other) {
if (dynamic_cast<StarNode *>(other))
return child[0]->eq(other->child[0]);
return 0;
}
ostream& dump(ostream& os)
{
os << '(';
child[0]->dump(os);
return os << ")*";
}
};
/* Match a node one or more times. (This is a unary operator.) */
class PlusNode : public Node {
public:
PlusNode(Node *left) :
Node(left) { }
void compute_nullable()
{
nullable = child[0]->nullable;
}
void compute_firstpos()
{
firstpos = child[0]->firstpos;
}
void compute_lastpos()
{
lastpos = child[0]->lastpos;
}
void compute_followpos()
{
State from = child[0]->lastpos, to = child[0]->firstpos;
for(State::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other) {
if (dynamic_cast<PlusNode *>(other))
return child[0]->eq(other->child[0]);
return 0;
}
ostream& dump(ostream& os)
{
os << '(';
child[0]->dump(os);
return os << ")+";
}
};
/* Match one of two alternative nodes. */
class AltNode : public Node {
public:
AltNode(Node *left, Node *right) :
Node(left, right) { }
void compute_nullable()
{
nullable = child[0]->nullable || child[1]->nullable;
}
void compute_lastpos()
{
lastpos = child[0]->lastpos + child[1]->lastpos;
}
void compute_firstpos()
{
firstpos = child[0]->firstpos + child[1]->firstpos;
}
int eq(Node *other) {
if (dynamic_cast<AltNode *>(other)) {
if (!child[0]->eq(other->child[0]))
return 0;
return child[1]->eq(other->child[1]);
}
return 0;
}
ostream& dump(ostream& os)
{
os << '(';
child[0]->dump(os);
os << '|';
child[1]->dump(os);
os << ')';
return os;
// return os << '|';
}
};
/*
* Normalize the regex parse tree for factoring and cancelations
* left normalization (dir == 0) uses these rules
* (E | a) -> (a | E)
* (a | b) | c -> a | (b | c)
* (ab)c -> a(bc)
*
* right normalization (dir == 1) uses the same rules but reversed
* (a | E) -> (E | a)
* a | (b | c) -> (a | b) | c
* a(bc) -> (ab)c
*/
void normalize_tree(Node *t, int dir)
{
if (dynamic_cast<ImportantNode *>(t))
return;
for (;;) {
if (!dynamic_cast<EpsNode *>(t->child[!dir]) &&
((dynamic_cast<AltNode *>(t) &&
dynamic_cast<EpsNode *>(t->child[dir])) ||
(dynamic_cast<CatNode *>(t) &&
dynamic_cast<EpsNode *>(t->child[dir])))) {
// (E | a) -> (a | E)
// Ea -> aE
Node *c = t->child[dir];
t->child[dir] = t->child[!dir];
t->child[!dir] = c;
} else if ((dynamic_cast<AltNode *>(t) &&
dynamic_cast<AltNode *>(t->child[dir])) ||
(dynamic_cast<CatNode *>(t) &&
dynamic_cast<CatNode *>(t->child[dir]))) {
// (a | b) | c -> a | (b | c)
// (ab)c -> a(bc)
Node *c = t->child[dir];
t->child[dir] = c->child[dir];
c->child[dir] = c->child[!dir];
c->child[!dir] = t->child[!dir];
t->child[!dir] = c;
} else if (dynamic_cast<AltNode *>(t) &&
dynamic_cast<CharSetNode *>(t->child[dir]) &&
dynamic_cast<CharNode *>(t->child[!dir])) {
Node *c = t->child[dir];
t->child[dir] = t->child[!dir];
t->child[!dir] = c;
} else {
break;
}
}
if (t->child[dir])
normalize_tree(t->child[dir], dir);
if (t->child[!dir])
normalize_tree(t->child[!dir], dir);
}
//charset conversion is disabled for now,
//it hinders tree optimization in some cases, so it need to be either
//done post optimization, or have extra factoring rules added
#if 0
static Node *merge_charset(Node *a, Node *b)
{
if (dynamic_cast<CharNode *>(a) &&
dynamic_cast<CharNode *>(b)) {
Chars chars;
chars.insert(dynamic_cast<CharNode *>(a)->c);
chars.insert(dynamic_cast<CharNode *>(b)->c);
CharSetNode *n = new CharSetNode(chars);
return n;
} else if (dynamic_cast<CharNode *>(a) &&
dynamic_cast<CharSetNode *>(b)) {
Chars *chars = &dynamic_cast<CharSetNode *>(b)->chars;
chars->insert(dynamic_cast<CharNode *>(a)->c);
return b->dup();
} else if (dynamic_cast<CharSetNode *>(a) &&
dynamic_cast<CharSetNode *>(b)) {
Chars *from = &dynamic_cast<CharSetNode *>(a)->chars;
Chars *to = &dynamic_cast<CharSetNode *>(b)->chars;
for (Chars::iterator i = from->begin(); i != from->end(); i++)
to->insert(*i);
return b->dup();
}
//return ???;
}
static Node *alt_to_charsets(Node *t, int dir)
{
/*
Node *first = NULL;
Node *p = t;
Node *i = t;
for (;dynamic_cast<AltNode *>(i);) {
if (dynamic_cast<CharNode *>(i->child[dir]) ||
dynamic_cast<CharNodeSet *>(i->child[dir])) {
if (!first) {
first = i;
p = i;
i = i->child[!dir];
} else {
first->child[dir] = merge_charset(first->child[dir],
i->child[dir]);
p->child[!dir] = i->child[!dir]->dup();
Node *tmp = i;
i = i->child[!dir];
tmp->release();
}
} else {
p = i;
i = i->child[!dir];
}
}
// last altnode of chain check other dir as well
if (first && (dynamic_cast<charNode *>(i) ||
dynamic_cast<charNodeSet *>(i))) {
}
*/
/*
if (dynamic_cast<CharNode *>(t->child[dir]) ||
dynamic_cast<CharSetNode *>(t->child[dir]))
char_test = true;
(char_test &&
(dynamic_cast<CharNode *>(i->child[dir]) ||
dynamic_cast<CharSetNode *>(i->child[dir])))) {
*/
return t;
}
#endif
static Node *basic_alt_factor(Node *t, int dir)
{
if (!dynamic_cast<AltNode *>(t))
return t;
if (t->child[dir]->eq(t->child[!dir])) {
// (a | a) -> a
Node *tmp = t->child[dir]->dup();
t->release();
return tmp;
}
// (ab) | (ac) -> a(b|c)
if (dynamic_cast<CatNode *>(t->child[dir]) &&
dynamic_cast<CatNode *>(t->child[!dir]) &&
t->child[dir]->child[dir]->eq(t->child[!dir]->child[dir])) {
// (ab) | (ac) -> a(b|c)
Node *left = t->child[dir];
Node *right = t->child[!dir];
t->child[dir] = left->child[!dir];
t->child[!dir] = right->child[!dir]->dup();
left->child[!dir] = t;
right->release();
return left;
}
// a | (ab) -> a (E | b) -> a (b | E)
if (dynamic_cast<CatNode *>(t->child[!dir]) &&
t->child[dir]->eq(t->child[!dir]->child[dir])) {
Node *c = t->child[!dir];
t->child[dir]->release();
t->child[dir] = c->child[!dir];
t->child[!dir] = new EpsNode();
c->child[!dir] = t;
return c;
}
// ab | (a) -> a (b | E)
if (dynamic_cast<CatNode *>(t->child[dir]) &&
t->child[dir]->child[dir]->eq(t->child[!dir])) {
Node *c = t->child[dir];
t->child[!dir]->release();
t->child[dir] = c->child[!dir];
t->child[!dir] = new EpsNode();
c->child[!dir] = t;
return c;
}
return t;
}
static Node *basic_simplify(Node *t, int dir)
{
if (dynamic_cast<CatNode *>(t) &&
dynamic_cast<EpsNode *>(t->child[!dir])) {
// aE -> a
Node *tmp = t->child[dir]->dup();
t->release();
return tmp;
}
return basic_alt_factor(t, dir);
}
/*
* assumes a normalized tree. reductions shown for left normalization
* aE -> a
* (a | a) -> a
** factoring patterns
* a | (a | b) -> (a | b)
* a | (ab) -> a (E | b) -> a (b | E)
* (ab) | (ac) -> a(b|c)
*
* returns t - if no simplifications were made
* a new root node - if simplifications were made
*/
Node *simplify_tree_base(Node *t, int dir, bool &mod)
{
if (dynamic_cast<ImportantNode *>(t))
return t;
for (int i=0; i < 2; i++) {
if (t->child[i]) {
Node *c = simplify_tree_base(t->child[i], dir, mod);
if (c != t->child[i]) {
t->child[i] = c;
mod = true;
}
}
}
// only iterate on loop if modification made
for (;; mod = true) {
Node *tmp = basic_simplify(t, dir);
if (tmp != t) {
t = tmp;
continue;
}
/* all tests after this must meet 2 alt node condition */
if (!dynamic_cast<AltNode *>(t) ||
!dynamic_cast<AltNode *>(t->child[!dir]))
break;
// a | (a | b) -> (a | b)
// a | (b | (c | a)) -> (b | (c | a))
Node *p = t;
Node *i = t->child[!dir];
for (;dynamic_cast<AltNode *>(i); p = i, i = i->child[!dir]) {
if (t->child[dir]->eq(i->child[dir])) {
t->child[!dir]->dup();
t->release();
t = t->child[!dir];
continue;
}
}
// last altnode of chain check other dir as well
if (t->child[dir]->eq(p->child[!dir])) {
t->child[!dir]->dup();
t->release();
t = t->child[!dir];
continue;
}
//exact match didn't work, try factoring front
//a | (ac | (ad | () -> (a (E | c)) | (...)
//ab | (ac | (...)) -> (a (b | c)) | (...)
//ab | (a | (...)) -> (a (b | E)) | (...)
Node *pp;
int count = 0;
Node *subject = t->child[dir];
Node *a = subject;
if (dynamic_cast<CatNode *>(a))
a = a->child[dir];
a->dup();
for (pp = p = t, i = t->child[!dir];
dynamic_cast<AltNode *>(i); ) {
if ((dynamic_cast<CatNode *>(i->child[dir]) &&
a->eq(i->child[dir]->child[dir])) ||
(a->eq(i->child[dir]))) {
// extract matching alt node
p->child[!dir] = i->child[!dir];
i->child[!dir] = subject;
subject = basic_simplify(i, dir);
i = p->child[!dir];
count++;
} else {
pp = p; p = i; i = i->child[!dir];
}
}
// last altnode in chain check other dir as well
if ((dynamic_cast<CatNode *>(i) &&
a->eq(i->child[dir])) ||
(a->eq(i))) {
count++;
if (t == p) {
t->child[dir] = subject;
t = basic_simplify(t, dir);
} else {
t->child[dir] = p->child[dir];
p->child[dir] = subject;
pp->child[!dir] = basic_simplify(p, dir);
}
} else {
t->child[dir] = i;
p->child[!dir] = subject;
}
a->release();
if (count == 0)
break;
}
return t;
}
int debug_tree(Node *t)
{
int nodes = 1;
if (t->refcount > 1 && !dynamic_cast<AcceptNode *>(t)) {
fprintf(stderr, "Node %p has a refcount of %d\n", t, t->refcount);
}
if (!dynamic_cast<ImportantNode *>(t)) {
if (t->child[0])
nodes += debug_tree(t->child[0]);
if (t->child[1])
nodes += debug_tree(t->child[1]);
}
return nodes;
}
struct node_counts {
int charnode;
int charset;
int notcharset;
int alt;
int plus;
int star;
int any;
int cat;
};
static void count_tree_nodes(Node *t, struct node_counts *counts)
{
if (dynamic_cast<AltNode *>(t)) {
counts->alt++;
count_tree_nodes(t->child[0], counts);
count_tree_nodes(t->child[1], counts);
} else if (dynamic_cast<CatNode *>(t)) {
counts->cat++;
count_tree_nodes(t->child[0], counts);
count_tree_nodes(t->child[1], counts);
} else if (dynamic_cast<PlusNode *>(t)) {
counts->plus++;
count_tree_nodes(t->child[0], counts);
} else if (dynamic_cast<StarNode *>(t)) {
counts->star++;
count_tree_nodes(t->child[0], counts);
} else if (dynamic_cast<CharNode *>(t)) {
counts->charnode++;
} else if (dynamic_cast<AnyCharNode *>(t)) {
counts->any++;
} else if (dynamic_cast<CharSetNode *>(t)) {
counts->charset++;
} else if (dynamic_cast<NotCharSetNode *>(t)) {
counts->notcharset++;
}
}
#include "stdio.h"
#include "stdint.h"
#include "apparmor_re.h"
Node *simplify_tree(Node *t, dfaflags_t flags)
{
bool update;
if (flags & DFA_DUMP_TREE_STATS) {
struct node_counts counts = { };
count_tree_nodes(t, &counts);
fprintf(stderr, "expr tree: c %d, [] %d, [^] %d, | %d, + %d, * %d, . %d, cat %d\n", counts.charnode, counts.charset, counts.notcharset, counts.alt, counts.plus, counts.star, counts.any, counts.cat);
}
do {
update = false;
//default to right normalize first as this reduces the number
//of trailing nodes which might follow an internal *
//or **, which is where state explosion can happen
//eg. in one test this makes the difference between
// the dfa having about 7 thousands states,
// and it having about 1.25 million states
int dir = 1;
if (flags & DFA_CONTROL_TREE_LEFT)
dir = 0;
for (int count = 0; count < 2; count++) {
bool modified;
do {
modified = false;
if (!(flags & DFA_CONTROL_NO_TREE_NORMAL))
normalize_tree(t, dir);
t = simplify_tree_base(t, dir, modified);
if (modified)
update = true;
} while (modified);
if (flags & DFA_CONTROL_TREE_LEFT)
dir++;
else
dir--;
}
} while(update);
if (flags & DFA_DUMP_TREE_STATS) {
struct node_counts counts = { };
count_tree_nodes(t, &counts);
fprintf(stderr, "simplified expr tree: c %d, [] %d, [^] %d, | %d, + %d, * %d, . %d, cat %d\n", counts.charnode, counts.charset, counts.notcharset, counts.alt, counts.plus, counts.star, counts.any, counts.cat);
}
return t;
}
%}
%union {
char c;
Node *node;
Chars *cset;
}
%{
void regexp_error(Node **, const char *, const char *);
# define YYLEX_PARAM &text
int regexp_lex(YYSTYPE *, const char **);
static inline Chars*
insert_char(Chars* cset, uchar a)
{
cset->insert(a);
return cset;
}
static inline Chars*
insert_char_range(Chars* cset, uchar a, uchar b)
{
if (a > b)
swap(a, b);
for (uchar i = a; i <= b; i++)
cset->insert(i);
return cset;
}
%}
%pure-parser
/* %error-verbose */
%parse-param {Node **root}
%parse-param {const char *text}
%name-prefix = "regexp_"
%token <c> CHAR
%type <c> regex_char cset_char1 cset_char cset_charN
%type <cset> charset cset_chars
%type <node> regexp expr terms0 terms qterm term
/**
* Note: destroy all nodes upon failure, but *not* the start symbol once
* parsing succeeds!
*/
%destructor { $$->release(); } expr terms0 terms qterm term
%%
/* FIXME: Does not parse "[--]", "[---]", "[^^-x]". I don't actually know
which precise grammer Perl regexps use, and rediscovering that
is proving to be painful. */
regexp : /* empty */ { *root = $$ = new EpsNode; }
| expr { *root = $$ = $1; }
;
expr : terms
| expr '|' terms0 { $$ = new AltNode($1, $3); }
| '|' terms0 { $$ = new AltNode(new EpsNode, $2); }
;
terms0 : /* empty */ { $$ = new EpsNode; }
| terms
;
terms : qterm
| terms qterm { $$ = new CatNode($1, $2); }
;
qterm : term
| term '*' { $$ = new StarNode($1); }
| term '+' { $$ = new PlusNode($1); }
;
term : '.' { $$ = new AnyCharNode; }
| regex_char { $$ = new CharNode($1); }
| '[' charset ']' { $$ = new CharSetNode(*$2);
delete $2; }
| '[' '^' charset ']'
{ $$ = new NotCharSetNode(*$3);
delete $3; }
| '[' '^' '^' cset_chars ']'
{ $4->insert('^');
$$ = new NotCharSetNode(*$4);
delete $4; }
| '(' regexp ')' { $$ = $2; }
;
regex_char : CHAR
| '^' { $$ = '^'; }
| '-' { $$ = '-'; }
| ']' { $$ = ']'; }
;
charset : cset_char1 cset_chars
{ $$ = insert_char($2, $1); }
| cset_char1 '-' cset_charN cset_chars
{ $$ = insert_char_range($4, $1, $3); }
;
cset_chars : /* nothing */ { $$ = new Chars; }
| cset_chars cset_charN
{ $$ = insert_char($1, $2); }
| cset_chars cset_charN '-' cset_charN
{ $$ = insert_char_range($1, $2, $4); }
;
cset_char1 : cset_char
| ']' { $$ = ']'; }
| '-' { $$ = '-'; }
;
cset_charN : cset_char
| '^' { $$ = '^'; }
;
cset_char : CHAR
| '[' { $$ = '['; }
| '*' { $$ = '*'; }
| '+' { $$ = '+'; }
| '.' { $$ = '.'; }
| '|' { $$ = '|'; }
| '(' { $$ = '('; }
| ')' { $$ = ')'; }
;
%%
#include <string.h>
#include <getopt.h>
#include <assert.h>
#include <arpa/inet.h>
#include <iostream>
#include <fstream>
#include "../immunix.h"
/* Traverse the syntax tree depth-first in an iterator-like manner. */
class depth_first_traversal {
vector<Node *> stack;
vector<bool> visited;
public:
depth_first_traversal(Node *node) {
stack.push_back(node);
while (node->child[0]) {
visited.push_back(false);
stack.push_back(node->child[0]);
node = node->child[0];
}
}
Node *operator*()
{
return stack.back();
}
Node* operator->()
{
return stack.back();
}
operator bool()
{
return !stack.empty();
}
void operator++(int)
{
stack.pop_back();
if (!stack.empty()) {
if (!visited.back() && stack.back()->child[1]) {
visited.pop_back();
visited.push_back(true);
stack.push_back(stack.back()->child[1]);
while (stack.back()->child[0]) {
visited.push_back(false);
stack.push_back(stack.back()->child[0]);
}
} else
visited.pop_back();
}
}
};
ostream& operator<<(ostream& os, Node& node)
{
node.dump(os);
return os;
}
ostream& operator<<(ostream& os, uchar c)
{
const char *search = "\a\033\f\n\r\t|*+[](). ",
*replace = "aefnrt|*+[](). ", *s;
if ((s = strchr(search, c)) && *s != '\0')
os << '\\' << replace[s - search];
else if (c < 32 || c >= 127)
os << '\\' << '0' << char('0' + (c >> 6))
<< char('0' + ((c >> 3) & 7)) << char('0' + (c & 7));
else
os << (char)c;
return os;
}
int
octdigit(char c)
{
if (c >= '0' && c <= '7')
return c - '0';
return -1;
}
int
hexdigit(char c)
{
if (c >= '0' && c <= '9')
return c - '0';
else if (c >= 'A' && c <= 'F')
return 10 + c - 'A';
else if (c >= 'a' && c <= 'f')
return 10 + c - 'A';
else
return -1;
}
int
regexp_lex(YYSTYPE *val, const char **pos)
{
int c;
val->c = **pos;
switch(*(*pos)++) {
case '\0':
(*pos)--;
return 0;
case '*': case '+': case '.': case '|': case '^': case '-':
case '[': case ']': case '(' : case ')':
return *(*pos - 1);
case '\\':
val->c = **pos;
switch(*(*pos)++) {
case '\0':
(*pos)--;
/* fall through */
case '\\':
val->c = '\\';
break;
case '0':
val->c = 0;
if ((c = octdigit(**pos)) >= 0) {
val->c = c;
(*pos)++;
}
if ((c = octdigit(**pos)) >= 0) {
val->c = (val->c << 3) + c;
(*pos)++;
}
if ((c = octdigit(**pos)) >= 0) {
val->c = (val->c << 3) + c;
(*pos)++;
}
break;
case 'x':
val->c = 0;
if ((c = hexdigit(**pos)) >= 0) {
val->c = c;
(*pos)++;
}
if ((c = hexdigit(**pos)) >= 0) {
val->c = (val->c << 4) + c;
(*pos)++;
}
break;
case 'a':
val->c = '\a';
break;
case 'e':
val->c = 033 /* ESC */;
break;
case 'f':
val->c = '\f';
break;
case 'n':
val->c = '\n';
break;
case 'r':
val->c = '\r';
break;
case 't':
val->c = '\t';
break;
}
}
return CHAR;
}
void
regexp_error(Node **, const char *text, const char *error)
{
/* We don't want the library to print error messages. */
}
/**
* Assign a consecutive number to each node. This is only needed for
* pretty-printing the debug output.
*/
void label_nodes(Node *root)
{
int nodes = 0;
for (depth_first_traversal i(root); i; i++)
i->label = nodes++;
}
/**
* Text-dump a state (for debugging).
*/
ostream& operator<<(ostream& os, const State& state)
{
os << '{';
if (!state.empty()) {
State::iterator i = state.begin();
for(;;) {
os << (*i)->label;
if (++i == state.end())
break;
os << ',';
}
}
os << '}';
return os;
}
/**
* Text-dump the syntax tree (for debugging).
*/
void dump_syntax_tree(ostream& os, Node *node) {
for (depth_first_traversal i(node); i; i++) {
os << i->label << '\t';
if ((*i)->child[0] == 0)
os << **i << '\t' << (*i)->followpos << endl;
else {
if ((*i)->child[1] == 0)
os << (*i)->child[0]->label << **i;
else
os << (*i)->child[0]->label << **i
<< (*i)->child[1]->label;
os << '\t' << (*i)->firstpos
<< (*i)->lastpos << endl;
}
}
os << endl;
}
/* Comparison operator for sets of <State *>. */
template<class T>
class deref_less_than {
public:
deref_less_than() { }
bool operator()(T a, T b)
{
return *a < *b;
}
};
/**
* States in the DFA. The pointer comparison allows us to tell sets we
* have seen already from new ones when constructing the DFA.
*/
typedef set<State *, deref_less_than<State *> > States;
typedef list<State *> Partition;
/* Transitions in the DFA. */
typedef map<State *, Cases> Trans;
class DFA {
public:
DFA(Node *root, dfaflags_t flags);
virtual ~DFA();
void remove_unreachable(dfaflags_t flags);
bool same_mappings(map <State *, Partition *> &partition_map, State *s1,
State *s2);
size_t hash_trans(State *s);
void minimize(dfaflags_t flags);
void dump(ostream& os);
void dump_dot_graph(ostream& os);
map<uchar, uchar> equivalence_classes(dfaflags_t flags);
void apply_equivalence_classes(map<uchar, uchar>& eq);
State *verify_perms(void);
Node *root;
State *nonmatching, *start;
States states;
Trans trans;
};
/**
* Construct a DFA from a syntax tree.
*/
DFA::DFA(Node *root, dfaflags_t flags) : root(root)
{
int i, match_count, nomatch_count;
i = match_count = nomatch_count = 0;
if (flags & DFA_DUMP_PROGRESS)
fprintf(stderr, "Creating dfa:\r");
for (depth_first_traversal i(root); i; i++) {
(*i)->compute_nullable();
(*i)->compute_firstpos();
(*i)->compute_lastpos();
}
if (flags & DFA_DUMP_PROGRESS)
fprintf(stderr, "Creating dfa: followpos\r");
for (depth_first_traversal i(root); i; i++) {
(*i)->compute_followpos();
}
nonmatching = new State;
states.insert(nonmatching);
start = new State(root->firstpos);
states.insert(start);
list<State *> work_queue;
work_queue.push_back(start);
while (!work_queue.empty()) {
if (i % 1000 == 0 && (flags & DFA_DUMP_PROGRESS))
fprintf(stderr, "\033[2KCreating dfa: queue %ld\tstates %ld\tmatching %d\tnonmatching %d\r", work_queue.size(), states.size(), match_count, nomatch_count);
i++;
State *from = work_queue.front();
work_queue.pop_front();
Cases cases;
for (State::iterator i = from->begin(); i != from->end(); i++)
(*i)->follow(cases);
if (cases.otherwise) {
pair <States::iterator, bool> x = states.insert(cases.otherwise);
if (x.second) {
nomatch_count++;
work_queue.push_back(cases.otherwise);
} else {
match_count++;
delete cases.otherwise;
cases.otherwise = *x.first;
}
}
for (Cases::iterator j = cases.begin(); j != cases.end(); j++) {
pair <States::iterator, bool> x = states.insert(j->second);
if (x.second) {
nomatch_count++;
work_queue.push_back(*x.first);
} else {
match_count++;
delete j->second;
j->second = *x.first;
}
}
Cases& here = trans.insert(make_pair(from, Cases())).first->second;
here.otherwise = cases.otherwise;
for (Cases::iterator j = cases.begin(); j != cases.end(); j++) {
/**
* Do not insert transitions that the default transition already
* covers.
*/
if (j->second != cases.otherwise)
here.cases.insert(*j);
}
}
for (depth_first_traversal i(root); i; i++) {
(*i)->firstpos.clear();
(*i)->lastpos.clear();
(*i)->followpos.clear();
}
if (flags & (DFA_DUMP_STATS))
fprintf(stderr, "\033[2KCreated dfa: states %ld\tmatching %d\tnonmatching %d\n", states.size(), match_count, nomatch_count);
if (!(flags & DFA_CONTROL_NO_MINIMIZE))
minimize(flags);
if (!(flags & DFA_CONTROL_NO_UNREACHABLE))
remove_unreachable(flags);
}
DFA::~DFA()
{
for (States::iterator i = states.begin(); i != states.end(); i++)
delete *i;
}
class MatchFlag : public AcceptNode {
public:
MatchFlag(uint32_t flag, uint32_t audit) : flag(flag), audit(audit) {}
ostream& dump(ostream& os)
{
return os << '<' << flag << '>';
}
uint32_t flag;
uint32_t audit;
};
class ExactMatchFlag : public MatchFlag {
public:
ExactMatchFlag(uint32_t flag, uint32_t audit) : MatchFlag(flag, audit) {}
};
class DenyMatchFlag : public MatchFlag {
public:
DenyMatchFlag(uint32_t flag, uint32_t quiet) : MatchFlag(flag, quiet) {}
};
uint32_t accept_perms(State *state, uint32_t *audit_ctl, int *error);
/**
* verify that there are no conflicting X permissions on the dfa
* return NULL - perms verified okay
* State of 1st encountered with bad X perms
*/
State *DFA::verify_perms(void)
{
int error = 0;
for (States::iterator i = states.begin(); i != states.end(); i++) {
uint32_t accept = accept_perms(*i, NULL, &error);
if (*i == start || accept) {
if (error)
return *i;
}
}
return NULL;
}
/* Remove dead or unreachable states */
void DFA::remove_unreachable(dfaflags_t flags)
{
set <State *> reachable;
list <State *> work_queue;
/* find the set of reachable states */
reachable.insert(nonmatching);
work_queue.push_back(start);
while (!work_queue.empty()) {
State *from = work_queue.front();
work_queue.pop_front();
reachable.insert(from);
Trans::iterator i = trans.find(from);
if (i == trans.end() && from != nonmatching)
continue;
if (i->second.otherwise &&
(reachable.find(i->second.otherwise) == reachable.end()))
work_queue.push_back(i->second.otherwise);
for (Cases::iterator j = i->second.begin();
j != i->second.end(); j++) {
if (reachable.find(j->second) == reachable.end())
work_queue.push_back(j->second);
}
}
/* walk the set of states and remove any that aren't reachable */
if (reachable.size() < states.size()) {
int count = 0;
States::iterator i;
States::iterator next;
for (i = states.begin(); i != states.end(); i = next) {
next = i;
next++;
if (reachable.find(*i) == reachable.end()) {
states.erase(*i);
Trans::iterator t = trans.find(*i);
if (t != trans.end())
trans.erase(t);
if (flags & DFA_DUMP_UNREACHABLE) {
uint32_t audit, accept = accept_perms(*i, &audit, NULL);
cerr << "unreachable: "<< **i;
if (*i == start)
cerr << " <==";
if (accept) {
cerr << " (0x" << hex << accept
<< " " << audit << dec << ')';
}
cerr << endl;
}
}
delete(*i);
count++;
}
if (count && (flags & DFA_DUMP_STATS))
cerr << "DFA: states " << states.size() << " removed "
<< count << " unreachable states\n";
}
}
/* test if two states have the same transitions under partition_map */
bool DFA::same_mappings(map <State *, Partition *> &partition_map, State *s1,
State *s2)
{
Trans::iterator i1 = trans.find(s1);
Trans::iterator i2 = trans.find(s2);
if (i1 == trans.end()) {
if (i2 == trans.end()) {
return true;
}
return false;
} else if (i2 == trans.end()) {
return false;
}
if (i1->second.otherwise) {
if (!i2->second.otherwise)
return false;
Partition *p1 = partition_map.find(i1->second.otherwise)->second;
Partition *p2 = partition_map.find(i2->second.otherwise)->second;
if (p1 != p2)
return false;
} else if (i2->second.otherwise) {
return false;
}
if (i1->second.cases.size() != i2->second.cases.size())
return false;
for (Cases::iterator j1 = i1->second.begin(); j1 != i1->second.end();
j1++){
Cases::iterator j2 = i2->second.cases.find(j1->first);
if (j2 == i2->second.end())
return false;
Partition *p1 = partition_map.find(j1->second)->second;
Partition *p2 = partition_map.find(j2->second)->second;
if (p1 != p2)
return false;
}
return true;
}
/* Do simple djb2 hashing against a States transition cases
* this provides a rough initial guess at state equivalence as if a state
* has a different number of transitions or has transitions on different
* cases they will never be equivalent.
* Note: this only hashes based off of the alphabet (not destination)
* as different destinations could end up being equiv
*/
size_t DFA::hash_trans(State *s)
{
unsigned long hash = 5381;
Trans::iterator i = trans.find(s);
if (i == trans.end())
return 0;
for (Cases::iterator j = i->second.begin(); j != i->second.end(); j++){
hash = ((hash << 5) + hash) + j->first;
Trans::iterator k = trans.find(j->second);
hash = ((hash << 5) + hash) + k->second.cases.size();
}
if (i->second.otherwise && i->second.otherwise != nonmatching) {
hash = ((hash << 5) + hash) + 5381;
Trans::iterator k = trans.find(i->second.otherwise);
hash = ((hash << 5) + hash) + k->second.cases.size();
}
hash = (hash << 8) | i->second.cases.size();
return hash;
}
/* minimize the number of dfa states */
void DFA::minimize(dfaflags_t flags)
{
map <pair <uint64_t, size_t>, Partition *> perm_map;
list <Partition *> partitions;
map <State *, Partition *> partition_map;
/* Set up the initial partitions - 1 non accepting, and a
* partion for each unique combination of permissions
*
* Save off accept value for State so we don't have to recompute
* this should be fixed by updating State to store them but this
* will work for now
*/
int accept_count = 0;
for (States::iterator i = states.begin(); i != states.end(); i++) {
uint32_t accept1, accept2;
accept1 = accept_perms(*i, &accept2, NULL);
uint64_t combined = ((uint64_t)accept2)<<32 | (uint64_t)accept1;
size_t size = 0;
if (!(flags & DFA_CONTROL_NO_HASH_PART))
size = hash_trans(*i);
pair <uint64_t, size_t> group = make_pair(combined, size);
map <pair <uint64_t, size_t>, Partition *>::iterator p = perm_map.find(group);
if (p == perm_map.end()) {
Partition *part = new Partition();
part->push_back(*i);
perm_map.insert(make_pair(group, part));
partitions.push_back(part);
partition_map.insert(make_pair(*i, part));
if (combined)
accept_count++;
} else {
partition_map.insert(make_pair(*i, p->second));
p->second->push_back(*i);
}
if ((flags & DFA_DUMP_PROGRESS) &&
(partitions.size() % 1000 == 0))
cerr << "\033[2KMinimize dfa: partitions " << partitions.size() << "\tinit " << partitions.size() << "\t(accept " << accept_count << ")\r";
}
int init_count = partitions.size();
if (flags & DFA_DUMP_PROGRESS)
cerr << "\033[2KMinimize dfa: partitions " << partitions.size() << "\tinit " << init_count << "\t(accept " << accept_count << ")\r";
/* Now do repartitioning until each partition contains the set of
* states that are the same. This will happen when the partition
* splitting stables. With a worse case of 1 state per partition
* ie. already minimized.
*/
Partition *new_part;
int new_part_count;
do {
new_part_count = 0;
for (list <Partition *>::iterator p = partitions.begin();
p != partitions.end(); p++) {
new_part = NULL;
State *rep = *((*p)->begin());
Partition::iterator next;
for (Partition::iterator s = ++(*p)->begin();
s != (*p)->end(); ) {
if (same_mappings(partition_map, rep, *s)) {
++s;
continue;
}
if (!new_part) {
new_part = new Partition;
list <Partition *>::iterator tmp = p;
partitions.insert(++tmp, new_part);
new_part_count++;
}
new_part->push_back(*s);
s = (*p)->erase(s);
}
/* remapping partition_map for new_part entries
* Do not do this above as it messes up same_mappings
*/
if (new_part) {
for (Partition::iterator m = new_part->begin();
m != new_part->end(); m++) {
partition_map.erase(*m);
partition_map.insert(make_pair(*m, new_part));
}
}
if ((flags & DFA_DUMP_PROGRESS) &&
(partitions.size() % 100 == 0))
cerr << "\033[2KMinimize dfa: partitions " << partitions.size() << "\tinit " << init_count << "\t(accept " << accept_count << ")\r";
}
} while(new_part_count);
if (flags & DFA_DUMP_STATS)
cerr << "\033[2KMinimize dfa: partitions " << partitions.size() << "\tinit " << init_count << "\t(accept " << accept_count << ")\n";
if (partitions.size() == states.size()) {
goto out;
}
/* Remap the dfa so it uses the representative states
* Use the first state of a partition as the representative state
* At this point all states with in a partion have transitions
* to same states within the same partitions
*/
for (list <Partition *>::iterator p = partitions.begin();
p != partitions.end(); p++) {
/* representative state for this partition */
State *rep = *((*p)->begin());
/* update representative state's transitions */
Trans::iterator i = trans.find(rep);
if (i != trans.end()) {
if (i->second.otherwise) {
map <State *, Partition *>::iterator z = partition_map.find(i->second.otherwise);
Partition *partition = partition_map.find(i->second.otherwise)->second;
i->second.otherwise = *partition->begin();
}
for (Cases::iterator c = i->second.begin();
c != i->second.end(); c++) {
Partition *partition = partition_map.find(c->second)->second;
c->second = *partition->begin();
}
}
}
/* make sure nonmatching and start state are up to date with the
* mappings */
{
Partition *partition = partition_map.find(nonmatching)->second;
if (*partition->begin() != nonmatching) {
nonmatching = *partition->begin();
}
partition = partition_map.find(start)->second;
if (*partition->begin() != start) {
start = *partition->begin();
}
}
/* Now that the states have been remapped, remove all states
* that are not the representive states for their partition
*/
for (list <Partition *>::iterator p = partitions.begin();
p != partitions.end(); p++) {
for (Partition::iterator i = ++(*p)->begin(); i != (*p)->end(); i++) {
Trans::iterator j = trans.find(*i);
if (j != trans.end())
trans.erase(j);
State *s = *i;
states.erase(*i);
delete(s);
}
}
out:
/* Cleanup */
while (!partitions.empty()) {
Partition *p = partitions.front();
partitions.pop_front();
delete(p);
}
}
/**
* text-dump the DFA (for debugging).
*/
void DFA::dump(ostream& os)
{
int error = 0;
for (States::iterator i = states.begin(); i != states.end(); i++) {
uint32_t accept, audit;
accept = accept_perms(*i, &audit, &error);
if (*i == start || accept) {
os << **i;
if (*i == start)
os << " <==";
if (accept) {
os << " (0x" << hex << accept << " " << audit << dec << ')';
}
os << endl;
}
}
os << endl;
for (Trans::iterator i = trans.begin(); i != trans.end(); i++) {
if (i->second.otherwise)
os << *(i->first) << " -> " << *i->second.otherwise << endl;
for (Cases::iterator j = i->second.begin(); j != i->second.end(); j++) {
os << *(i->first) << " -> " << *(j->second) << ": "
<< j->first << endl;
}
}
os << endl;
}
/**
* Create a dot (graphviz) graph from the DFA (for debugging).
*/
void DFA::dump_dot_graph(ostream& os)
{
os << "digraph \"dfa\" {" << endl;
for (States::iterator i = states.begin(); i != states.end(); i++) {
if (*i == nonmatching)
continue;
os << "\t\"" << **i << "\" [" << endl;
if (*i == start) {
os << "\t\tstyle=bold" << endl;
}
int error = 0;
uint32_t perms = accept_perms(*i, NULL, &error);
if (perms) {
os << "\t\tlabel=\"" << **i << "\\n("
<< perms << ")\"" << endl;
}
os << "\t]" << endl;
}
for (Trans::iterator i = trans.begin(); i != trans.end(); i++) {
Cases& cases = i->second;
Chars excluded;
for (Cases::iterator j = cases.begin(); j != cases.end(); j++) {
if (j->second == nonmatching)
excluded.insert(j->first);
else {
os << "\t\"" << *i->first << "\" -> \"";
os << *j->second << "\" [" << endl;
os << "\t\tlabel=\"" << (char)j->first << "\"" << endl;
os << "\t]" << endl;
}
}
if (i->second.otherwise && i->second.otherwise != nonmatching) {
os << "\t\"" << *i->first << "\" -> \"" << *i->second.otherwise
<< "\" [" << endl;
if (!excluded.empty()) {
os << "\t\tlabel=\"[^";
for (Chars::iterator i = excluded.begin();
i != excluded.end();
i++) {
os << *i;
}
os << "]\"" << endl;
}
os << "\t]" << endl;
}
}
os << '}' << endl;
}
/**
* Compute character equivalence classes in the DFA to save space in the
* transition table.
*/
map<uchar, uchar> DFA::equivalence_classes(dfaflags_t flags)
{
map<uchar, uchar> classes;
uchar next_class = 1;
for (Trans::iterator i = trans.begin(); i != trans.end(); i++) {
Cases& cases = i->second;
/* Group edges to the same next state together */
map<const State *, Chars> node_sets;
for (Cases::iterator j = cases.begin(); j != cases.end(); j++)
node_sets[j->second].insert(j->first);
for (map<const State *, Chars>::iterator j = node_sets.begin();
j != node_sets.end();
j++) {
/* Group edges to the same next state together by class */
map<uchar, Chars> node_classes;
bool class_used = false;
for (Chars::iterator k = j->second.begin();
k != j->second.end();
k++) {
pair<map<uchar, uchar>::iterator, bool> x =
classes.insert(make_pair(*k, next_class));
if (x.second)
class_used = true;
pair<map<uchar, Chars>::iterator, bool> y =
node_classes.insert(make_pair(x.first->second, Chars()));
y.first->second.insert(*k);
}
if (class_used) {
next_class++;
class_used = false;
}
for (map<uchar, Chars>::iterator k = node_classes.begin();
k != node_classes.end();
k++) {
/**
* If any other characters are in the same class, move
* the characters in this class into their own new class
*/
map<uchar, uchar>::iterator l;
for (l = classes.begin(); l != classes.end(); l++) {
if (l->second == k->first &&
k->second.find(l->first) == k->second.end()) {
class_used = true;
break;
}
}
if (class_used) {
for (Chars::iterator l = k->second.begin();
l != k->second.end();
l++) {
classes[*l] = next_class;
}
next_class++;
class_used = false;
}
}
}
}
if (flags & DFA_DUMP_EQUIV_STATS)
fprintf(stderr, "Equiv class reduces to %d classes\n", next_class - 1);
return classes;
}
/**
* Text-dump the equivalence classes (for debugging).
*/
void dump_equivalence_classes(ostream& os, map<uchar, uchar>& eq)
{
map<uchar, Chars> rev;
for (map<uchar, uchar>::iterator i = eq.begin(); i != eq.end(); i++) {
Chars& chars = rev.insert(make_pair(i->second,
Chars())).first->second;
chars.insert(i->first);
}
os << "(eq):" << endl;
for (map<uchar, Chars>::iterator i = rev.begin(); i != rev.end(); i++) {
os << (int)i->first << ':';
Chars& chars = i->second;
for (Chars::iterator j = chars.begin(); j != chars.end(); j++) {
os << ' ' << *j;
}
os << endl;
}
}
/**
* Replace characters with classes (which are also represented as
* characters) in the DFA transition table.
*/
void DFA::apply_equivalence_classes(map<uchar, uchar>& eq)
{
/**
* Note: We only transform the transition table; the nodes continue to
* contain the original characters.
*/
for (Trans::iterator i = trans.begin(); i != trans.end(); i++) {
map<uchar, State *> tmp;
tmp.swap(i->second.cases);
for (Cases::iterator j = tmp.begin(); j != tmp.end(); j++)
i->second.cases.insert(make_pair(eq[j->first], j->second));
}
}
/**
* Flip the children of all cat nodes. This causes strings to be matched
* back-forth.
*/
void flip_tree(Node *node)
{
for (depth_first_traversal i(node); i; i++) {
if (CatNode *cat = dynamic_cast<CatNode *>(*i)) {
swap(cat->child[0], cat->child[1]);
}
}
}
class TransitionTable {
typedef vector<pair<const State *, size_t> > DefaultBase;
typedef vector<pair<const State *, const State *> > NextCheck;
public:
TransitionTable(DFA& dfa, map<uchar, uchar>& eq, dfaflags_t flags);
void dump(ostream& os);
void flex_table(ostream& os, const char *name);
void init_free_list(vector <pair<size_t, size_t> > &free_list, size_t prev, size_t start);
bool fits_in(vector <pair<size_t, size_t> > &free_list,
size_t base, Cases& cases);
void insert_state(vector <pair<size_t, size_t> > &free_list,
State *state, DFA& dfa);
private:
vector<uint32_t> accept;
vector<uint32_t> accept2;
DefaultBase default_base;
NextCheck next_check;
map<const State *, size_t> num;
map<uchar, uchar>& eq;
uchar max_eq;
size_t first_free;
};
void TransitionTable::init_free_list(vector <pair<size_t, size_t> > &free_list,
size_t prev, size_t start) {
for (size_t i = start; i < free_list.size(); i++) {
if (prev)
free_list[prev].second = i;
free_list[i].first = prev;
prev = i;
}
free_list[free_list.size() -1].second = 0;
}
/**
* new Construct the transition table.
*/
TransitionTable::TransitionTable(DFA& dfa, map<uchar, uchar>& eq,
dfaflags_t flags)
: eq(eq)
{
if (flags & DFA_DUMP_TRANS_PROGRESS)
fprintf(stderr, "Creating trans table:\r");
if (eq.empty())
max_eq = 255;
else {
max_eq = 0;
for(map<uchar, uchar>::iterator i = eq.begin(); i != eq.end(); i++) {
if (i->second > max_eq)
max_eq = i->second;
}
}
/* Do initial setup adding up all the transitions and sorting by
* transition count.
*/
size_t optimal = 2;
multimap <size_t, State *> order;
vector <pair<size_t, size_t> > free_list;
for (Trans::iterator i = dfa.trans.begin(); i != dfa.trans.end(); i++) {
if (i->first == dfa.start || i->first == dfa.nonmatching)
continue;
optimal += i->second.cases.size();
if (flags & DFA_CONTROL_TRANS_HIGH) {
size_t range = 0;
if (i->second.cases.size())
range = i->second.cases.rbegin()->first - i->second.begin()->first;
size_t ord = ((256 - i->second.cases.size()) << 8) |
(256 - range);
/* reverse sort by entry count, most entries first */
order.insert(make_pair(ord, i->first));
}
}
/* Insert the dummy nonmatching transition by hand */
next_check.push_back(make_pair(dfa.nonmatching, dfa.nonmatching));
default_base.push_back(make_pair(dfa.nonmatching, 0));
num.insert(make_pair(dfa.nonmatching, num.size()));
accept.resize(dfa.states.size());
accept2.resize(dfa.states.size());
next_check.resize(optimal);
free_list.resize(optimal);
accept[0] = 0;
accept2[0] = 0;
first_free = 1;
init_free_list(free_list, 0, 1);
insert_state(free_list, dfa.start, dfa);
accept[1] = 0;
accept2[1] = 0;
num.insert(make_pair(dfa.start, num.size()));
int count = 2;
if (!(flags & DFA_CONTROL_TRANS_HIGH)) {
for (States::iterator i = dfa.states.begin(); i != dfa.states.end();
i++) {
if (*i != dfa.nonmatching && *i != dfa.start) {
insert_state(free_list, *i, dfa);
int error = 0;
uint32_t audit_ctl;
accept[num.size()] = accept_perms(*i, &audit_ctl, &error);
accept2[num.size()] = audit_ctl;
num.insert(make_pair(*i, num.size()));
}
if (flags & (DFA_DUMP_TRANS_PROGRESS)) {
count++;
if (count % 100 == 0)
fprintf(stderr, "\033[2KCreating trans table: insert state: %d/%ld\r", count, dfa.states.size());
}
}
} else {
for (multimap <size_t, State *>::iterator i = order.begin();
i != order.end(); i++) {
if (i->second != dfa.nonmatching && i->second != dfa.start) {
insert_state(free_list, i->second, dfa);
int error = 0;
uint32_t audit_ctl;
accept[num.size()] = accept_perms(i->second, &audit_ctl, &error);
accept2[num.size()] = audit_ctl;
num.insert(make_pair(i->second, num.size()));
}
if (flags & (DFA_DUMP_TRANS_PROGRESS)) {
count++;
if (count % 100 == 0)
fprintf(stderr, "\033[2KCreating trans table: insert state: %d/%ld\r", count, dfa.states.size());
}
}
}
if (flags & (DFA_DUMP_TRANS_STATS | DFA_DUMP_TRANS_PROGRESS)) {
ssize_t size = 4 * next_check.size() + 6 * dfa.states.size();
fprintf(stderr, "\033[2KCreated trans table: states %ld, next/check %ld, optimal next/check %ld avg/state %.2f, compression %ld/%ld = %.2f %%\n", dfa.states.size(), next_check.size(), optimal, (float)next_check.size()/(float)dfa.states.size(), size, 512 * dfa.states.size(), 100.0 - ((float) size * 100.0 / (float)(512 * dfa.states.size())));
}
}
/**
* Does <cases> fit into position <base> of the transition table?
*/
bool TransitionTable::fits_in(vector <pair<size_t, size_t> > &free_list,
size_t pos, Cases& cases)
{
size_t c, base = pos - cases.begin()->first;
for (Cases::iterator i = cases.begin(); i != cases.end(); i++) {
c = base + i->first;
/* if it overflows the next_check array it fits in as we will
* resize */
if (c >= next_check.size())
return true;
if (next_check[c].second)
return false;
}
return true;
}
/**
* Insert <state> of <dfa> into the transition table.
*/
void TransitionTable::insert_state(vector <pair<size_t, size_t> > &free_list,
State *from, DFA& dfa)
{
State *default_state = dfa.nonmatching;
size_t base = 0;
int resize;
Trans::iterator i = dfa.trans.find(from);
if (i == dfa.trans.end()) {
return;
}
Cases& cases = i->second;
size_t c = cases.begin()->first;
size_t prev = 0;
size_t x = first_free;
if (cases.otherwise)
default_state = cases.otherwise;
if (cases.cases.empty())
goto do_insert;
repeat:
resize = 0;
/* get the first free entry that won't underflow */
while (x && (x < c)) {
prev = x;
x = free_list[x].second;
}
/* try inserting until we succeed. */
while (x && !fits_in(free_list, x, cases)) {
prev = x;
x = free_list[x].second;
}
if (!x) {
resize = 256 - cases.begin()->first;
x = free_list.size();
/* set prev to last free */
} else if (x + 255 - cases.begin()->first >= next_check.size()) {
resize = (255 - cases.begin()->first - (next_check.size() - 1 - x));
for (size_t y = x; y; y = free_list[y].second)
prev = y;
}
if (resize) {
/* expand next_check and free_list */
size_t old_size = free_list.size();
next_check.resize(next_check.size() + resize);
free_list.resize(free_list.size() + resize);
init_free_list(free_list, prev, old_size);
if (!first_free)
first_free = old_size;;
if (x == old_size)
goto repeat;
}
base = x - c;
for (Cases::iterator j = cases.begin(); j != cases.end(); j++) {
next_check[base + j->first] = make_pair(j->second, from);
size_t prev = free_list[base + j->first].first;
size_t next = free_list[base + j->first].second;
if (prev)
free_list[prev].second = next;
if (next)
free_list[next].first = prev;
if (base + j->first == first_free)
first_free = next;
}
do_insert:
default_base.push_back(make_pair(default_state, base));
}
/**
* Text-dump the transition table (for debugging).
*/
void TransitionTable::dump(ostream& os)
{
map<size_t, const State *> st;
for (map<const State *, size_t>::iterator i = num.begin();
i != num.end();
i++) {
st.insert(make_pair(i->second, i->first));
}
os << "(accept, default, base):" << endl;
for (size_t i = 0; i < default_base.size(); i++) {
os << "(" << accept[i] << ", "
<< num[default_base[i].first] << ", "
<< default_base[i].second << ")";
if (st[i])
os << " " << *st[i];
if (default_base[i].first)
os << " -> " << *default_base[i].first;
os << endl;
}
os << "(next, check):" << endl;
for (size_t i = 0; i < next_check.size(); i++) {
if (!next_check[i].second)
continue;
os << i << ": ";
if (next_check[i].second) {
os << "(" << num[next_check[i].first] << ", "
<< num[next_check[i].second] << ")" << " "
<< *next_check[i].second << " -> "
<< *next_check[i].first << ": ";
size_t offs = i - default_base[num[next_check[i].second]].second;
if (eq.size())
os << offs;
else
os << (uchar)offs;
}
os << endl;
}
}
#if 0
template<class Iter>
class FirstIterator {
public:
FirstIterator(Iter pos) : pos(pos) { }
typename Iter::value_type::first_type operator*() { return pos->first; }
bool operator!=(FirstIterator<Iter>& i) { return pos != i.pos; }
void operator++() { ++pos; }
ssize_t operator-(FirstIterator<Iter> i) { return pos - i.pos; }
private:
Iter pos;
};
template<class Iter>
FirstIterator<Iter> first_iterator(Iter iter)
{
return FirstIterator<Iter>(iter);
}
template<class Iter>
class SecondIterator {
public:
SecondIterator(Iter pos) : pos(pos) { }
typename Iter::value_type::second_type operator*() { return pos->second; }
bool operator!=(SecondIterator<Iter>& i) { return pos != i.pos; }
void operator++() { ++pos; }
ssize_t operator-(SecondIterator<Iter> i) { return pos - i.pos; }
private:
Iter pos;
};
template<class Iter>
SecondIterator<Iter> second_iterator(Iter iter)
{
return SecondIterator<Iter>(iter);
}
#endif
/**
* Create a flex-style binary dump of the DFA tables. The table format
* was partly reverse engineered from the flex sources and from
* examining the tables that flex creates with its --tables-file option.
* (Only the -Cf and -Ce formats are currently supported.)
*/
#include "flex-tables.h"
#include "regexp.h"
static inline size_t pad64(size_t i)
{
return (i + (size_t)7) & ~(size_t)7;
}
string fill64(size_t i)
{
const char zeroes[8] = { };
string fill(zeroes, (i & 7) ? 8 - (i & 7) : 0);
return fill;
}
template<class Iter>
size_t flex_table_size(Iter pos, Iter end)
{
return pad64(sizeof(struct table_header) + sizeof(*pos) * (end - pos));
}
template<class Iter>
void write_flex_table(ostream& os, int id, Iter pos, Iter end)
{
struct table_header td = { };
size_t size = end - pos;
td.td_id = htons(id);
td.td_flags = htons(sizeof(*pos));
td.td_lolen = htonl(size);
os.write((char *)&td, sizeof(td));
for (; pos != end; ++pos) {
switch(sizeof(*pos)) {
case 4:
os.put((char)(*pos >> 24));
os.put((char)(*pos >> 16));
case 2:
os.put((char)(*pos >> 8));
case 1:
os.put((char)*pos);
}
}
os << fill64(sizeof(td) + sizeof(*pos) * size);
}
void TransitionTable::flex_table(ostream& os, const char *name)
{
const char th_version[] = "notflex";
struct table_set_header th = { };
/**
* Change the following two data types to adjust the maximum flex
* table size.
*/
typedef uint16_t state_t;
typedef uint32_t trans_t;
if (default_base.size() >= (state_t)-1) {
cerr << "Too many states (" << default_base.size() << ") for "
"type state_t" << endl;
exit(1);
}
if (next_check.size() >= (trans_t)-1) {
cerr << "Too many transitions (" << next_check.size() << ") for "
"type trans_t" << endl;
exit(1);
}
/**
* Create copies of the data structures so that we can dump the tables
* using the generic write_flex_table() routine.
*/
vector<uint8_t> equiv_vec;
if (eq.size()) {
equiv_vec.resize(256);
for (map<uchar, uchar>::iterator i = eq.begin(); i != eq.end(); i++) {
equiv_vec[i->first] = i->second;
}
}
vector<state_t> default_vec;
vector<trans_t> base_vec;
for (DefaultBase::iterator i = default_base.begin();
i != default_base.end();
i++) {
default_vec.push_back(num[i->first]);
base_vec.push_back(i->second);
}
vector<state_t> next_vec;
vector<state_t> check_vec;
for (NextCheck::iterator i = next_check.begin();
i != next_check.end();
i++) {
next_vec.push_back(num[i->first]);
check_vec.push_back(num[i->second]);
}
/* Write the actual flex parser table. */
size_t hsize = pad64(sizeof(th) + sizeof(th_version) + strlen(name) + 1);
th.th_magic = htonl(YYTH_REGEXP_MAGIC);
th.th_hsize = htonl(hsize);
th.th_ssize = htonl(hsize +
flex_table_size(accept.begin(), accept.end()) +
flex_table_size(accept2.begin(), accept2.end()) +
(eq.size() ?
flex_table_size(equiv_vec.begin(), equiv_vec.end()) : 0) +
flex_table_size(base_vec.begin(), base_vec.end()) +
flex_table_size(default_vec.begin(), default_vec.end()) +
flex_table_size(next_vec.begin(), next_vec.end()) +
flex_table_size(check_vec.begin(), check_vec.end()));
os.write((char *)&th, sizeof(th));
os << th_version << (char)0 << name << (char)0;
os << fill64(sizeof(th) + sizeof(th_version) + strlen(name) + 1);
write_flex_table(os, YYTD_ID_ACCEPT, accept.begin(), accept.end());
write_flex_table(os, YYTD_ID_ACCEPT2, accept2.begin(), accept2.end());
if (eq.size())
write_flex_table(os, YYTD_ID_EC, equiv_vec.begin(), equiv_vec.end());
write_flex_table(os, YYTD_ID_BASE, base_vec.begin(), base_vec.end());
write_flex_table(os, YYTD_ID_DEF, default_vec.begin(), default_vec.end());
write_flex_table(os, YYTD_ID_NXT, next_vec.begin(), next_vec.end());
write_flex_table(os, YYTD_ID_CHK, check_vec.begin(), check_vec.end());
}
#if 0
typedef set<ImportantNode *> AcceptNodes;
map<ImportantNode *, AcceptNodes> dominance(DFA& dfa)
{
map<ImportantNode *, AcceptNodes> is_dominated;
for (States::iterator i = dfa.states.begin(); i != dfa.states.end(); i++) {
AcceptNodes set1;
for (State::iterator j = (*i)->begin(); j != (*i)->end(); j++) {
if (AcceptNode *accept = dynamic_cast<AcceptNode *>(*j))
set1.insert(accept);
}
for (AcceptNodes::iterator j = set1.begin(); j != set1.end(); j++) {
pair<map<ImportantNode *, AcceptNodes>::iterator, bool> x =
is_dominated.insert(make_pair(*j, set1));
if (!x.second) {
AcceptNodes &set2(x.first->second), set3;
for (AcceptNodes::iterator l = set2.begin();
l != set2.end();
l++) {
if (set1.find(*l) != set1.end())
set3.insert(*l);
}
set3.swap(set2);
}
}
}
return is_dominated;
}
#endif
void dump_regexp_rec(ostream& os, Node *tree)
{
if (tree->child[0])
dump_regexp_rec(os, tree->child[0]);
os << *tree;
if (tree->child[1])
dump_regexp_rec(os, tree->child[1]);
}
void dump_regexp(ostream& os, Node *tree)
{
dump_regexp_rec(os, tree);
os << endl;
}
#include <sstream>
#include <ext/stdio_filebuf.h>
struct aare_ruleset {
int reverse;
Node *root;
};
extern "C" aare_ruleset_t *aare_new_ruleset(int reverse)
{
aare_ruleset_t *container = (aare_ruleset_t *) malloc(sizeof(aare_ruleset_t));
if (!container)
return NULL;
container->root = NULL;
container->reverse = reverse;
return container;
}
extern "C" void aare_delete_ruleset(aare_ruleset_t *rules)
{
if (rules) {
if (rules->root)
rules->root->release();
free(rules);
}
}
static inline int diff_qualifiers(uint32_t perm1, uint32_t perm2)
{
return ((perm1 & AA_EXEC_TYPE) && (perm2 & AA_EXEC_TYPE) &&
(perm1 & AA_EXEC_TYPE) != (perm2 & AA_EXEC_TYPE));
}
/**
* Compute the permission flags that this state corresponds to. If we
* have any exact matches, then they override the execute and safe
* execute flags.
*/
uint32_t accept_perms(State *state, uint32_t *audit_ctl, int *error)
{
uint32_t perms = 0, exact_match_perms = 0, audit = 0, exact_audit = 0,
quiet = 0, deny = 0;
if (error)
*error = 0;
for (State::iterator i = state->begin(); i != state->end(); i++) {
MatchFlag *match;
if (!(match= dynamic_cast<MatchFlag *>(*i)))
continue;
if (dynamic_cast<ExactMatchFlag *>(match)) {
/* exact match only ever happens with x */
if (!is_merged_x_consistent(exact_match_perms,
match->flag) && error)
*error = 1;;
exact_match_perms |= match->flag;
exact_audit |= match->audit;
} else if (dynamic_cast<DenyMatchFlag *>(match)) {
deny |= match->flag;
quiet |= match->audit;
} else {
if (!is_merged_x_consistent(perms, match->flag) && error)
*error = 1;
perms |= match->flag;
audit |= match->audit;
}
}
//if (audit || quiet)
//fprintf(stderr, "perms: 0x%x, audit: 0x%x exact: 0x%x eaud: 0x%x deny: 0x%x quiet: 0x%x\n", perms, audit, exact_match_perms, exact_audit, deny, quiet);
perms |= exact_match_perms &
~(AA_USER_EXEC_TYPE | AA_OTHER_EXEC_TYPE);
if (exact_match_perms & AA_USER_EXEC_TYPE) {
perms = (exact_match_perms & AA_USER_EXEC_TYPE) |
(perms & ~AA_USER_EXEC_TYPE);
audit = (exact_audit & AA_USER_EXEC_TYPE) |
(audit & ~ AA_USER_EXEC_TYPE);
}
if (exact_match_perms & AA_OTHER_EXEC_TYPE) {
perms = (exact_match_perms & AA_OTHER_EXEC_TYPE) |
(perms & ~AA_OTHER_EXEC_TYPE);
audit = (exact_audit & AA_OTHER_EXEC_TYPE) |
(audit & ~AA_OTHER_EXEC_TYPE);
}
if (perms & AA_USER_EXEC & deny)
perms &= ~AA_USER_EXEC_TYPE;
if (perms & AA_OTHER_EXEC & deny)
perms &= ~AA_OTHER_EXEC_TYPE;
perms &= ~deny;
if (audit_ctl)
*audit_ctl = PACK_AUDIT_CTL(audit, quiet & deny);
// if (perms & AA_ERROR_BIT) {
// fprintf(stderr, "error bit 0x%x\n", perms);
// exit(255);
//}
//if (perms & AA_EXEC_BITS)
//fprintf(stderr, "accept perm: 0x%x\n", perms);
/*
if (perms & ~AA_VALID_PERMS)
yyerror(_("Internal error accumulated invalid perm 0x%llx\n"), perms);
*/
//if (perms & AA_CHANGE_HAT)
// fprintf(stderr, "change_hat 0x%x\n", perms);
return perms;
}
extern "C" int aare_add_rule(aare_ruleset_t *rules, char *rule, int deny,
uint32_t perms, uint32_t audit)
{
return aare_add_rule_vec(rules, deny, perms, audit, 1, &rule);
}
#define FLAGS_WIDTH 2
#define MATCH_FLAGS_SIZE (sizeof(uint32_t) * 8 - 1)
MatchFlag *match_flags[FLAGS_WIDTH][MATCH_FLAGS_SIZE];
DenyMatchFlag *deny_flags[FLAGS_WIDTH][MATCH_FLAGS_SIZE];
#define EXEC_MATCH_FLAGS_SIZE ((AA_EXEC_COUNT << 2) * 2)
MatchFlag *exec_match_flags[FLAGS_WIDTH][EXEC_MATCH_FLAGS_SIZE]; /* mods + unsafe + ix *u::o*/
ExactMatchFlag *exact_match_flags[FLAGS_WIDTH][EXEC_MATCH_FLAGS_SIZE];/* mods + unsafe +ix *u::o*/
extern "C" void aare_reset_matchflags(void)
{
uint32_t i, j;
#define RESET_FLAGS(group, size) { \
for (i = 0; i < FLAGS_WIDTH; i++) { \
for (j = 0; j < size; j++) { \
if ((group)[i][j]) (group)[i][j]->release(); \
(group)[i][j] = NULL; \
} \
} \
}
RESET_FLAGS(match_flags,MATCH_FLAGS_SIZE);
RESET_FLAGS(deny_flags,MATCH_FLAGS_SIZE);
RESET_FLAGS(exec_match_flags,EXEC_MATCH_FLAGS_SIZE);
RESET_FLAGS(exact_match_flags,EXEC_MATCH_FLAGS_SIZE);
#undef RESET_FLAGS
}
extern "C" int aare_add_rule_vec(aare_ruleset_t *rules, int deny,
uint32_t perms, uint32_t audit,
int count, char **rulev)
{
Node *tree = NULL, *accept;
int exact_match;
assert(perms != 0);
if (regexp_parse(&tree, rulev[0]))
return 0;
for (int i = 1; i < count; i++) {
Node *subtree = NULL;
Node *node = new CharNode(0);
if (!node)
return 0;
tree = new CatNode(tree, node);
if (regexp_parse(&subtree, rulev[i]))
return 0;
tree = new CatNode(tree, subtree);
}
/*
* Check if we have an expression with or without wildcards. This
* determines how exec modifiers are merged in accept_perms() based
* on how we split permission bitmasks here.
*/
exact_match = 1;
for (depth_first_traversal i(tree); i; i++) {
if (dynamic_cast<StarNode *>(*i) ||
dynamic_cast<PlusNode *>(*i) ||
dynamic_cast<AnyCharNode *>(*i) ||
dynamic_cast<CharSetNode *>(*i) ||
dynamic_cast<NotCharSetNode *>(*i))
exact_match = 0;
}
if (rules->reverse)
flip_tree(tree);
/* 0x3f == 4 bits x mods + 1 bit unsafe mask + 1 bit ix, after shift */
#define EXTRACT_X_INDEX(perm, shift) (((perm) >> (shift + 8)) & 0x3f)
//if (perms & ALL_AA_EXEC_TYPE && (!perms & AA_EXEC_BITS))
// fprintf(stderr, "adding X rule without MAY_EXEC: 0x%x %s\n", perms, rulev[0]);
//if (perms & ALL_EXEC_TYPE)
// fprintf(stderr, "adding X rule %s 0x%x\n", rulev[0], perms);
//if (audit)
//fprintf(stderr, "adding rule with audit bits set: 0x%x %s\n", audit, rulev[0]);
//if (perms & AA_CHANGE_HAT)
// fprintf(stderr, "adding change_hat rule %s\n", rulev[0]);
/* the permissions set is assumed to be non-empty if any audit
* bits are specified */
accept = NULL;
for (unsigned int n = 0; perms && n < (sizeof(perms) * 8) ; n++) {
uint32_t mask = 1 << n;
if (perms & mask) {
int ai = audit & mask ? 1 : 0;
perms &= ~mask;
Node *flag;
if (mask & ALL_AA_EXEC_TYPE)
/* these cases are covered by EXEC_BITS */
continue;
if (deny) {
if (deny_flags[ai][n]) {
flag = deny_flags[ai][n]->dup();
} else {
//fprintf(stderr, "Adding deny ai %d mask 0x%x audit 0x%x\n", ai, mask, audit & mask);
deny_flags[ai][n] = new DenyMatchFlag(mask, audit&mask);
flag = deny_flags[ai][n]->dup();
}
} else if (mask & AA_EXEC_BITS) {
uint32_t eperm = 0;
uint32_t index = 0;
if (mask & AA_USER_EXEC) {
eperm = mask | (perms & AA_USER_EXEC_TYPE);
index = EXTRACT_X_INDEX(eperm, AA_USER_SHIFT);
} else {
eperm = mask | (perms & AA_OTHER_EXEC_TYPE);
index = EXTRACT_X_INDEX(eperm, AA_OTHER_SHIFT) + (AA_EXEC_COUNT << 2);
}
//fprintf(stderr, "index %d eperm 0x%x\n", index, eperm);
if (exact_match) {
if (exact_match_flags[ai][index]) {
flag = exact_match_flags[ai][index]->dup();
} else {
exact_match_flags[ai][index] = new ExactMatchFlag(eperm, audit&mask);
flag = exact_match_flags[ai][index]->dup();
}
} else {
if (exec_match_flags[ai][index]) {
flag = exec_match_flags[ai][index]->dup();
} else {
exec_match_flags[ai][index] = new MatchFlag(eperm, audit&mask);
flag = exec_match_flags[ai][index]->dup();
}
}
} else {
if (match_flags[ai][n]) {
flag = match_flags[ai][n]->dup();
} else {
match_flags[ai][n] = new MatchFlag(mask, audit&mask);
flag = match_flags[ai][n]->dup();
}
}
if (accept)
accept = new AltNode(accept, flag);
else
accept = flag;
}
}
if (rules->root)
rules->root = new AltNode(rules->root, new CatNode(tree, accept));
else
rules->root = new CatNode(tree, accept);
return 1;
}
/* create a dfa from the ruleset
* returns: buffer contain dfa tables, @size set to the size of the tables
* else NULL on failure
*/
extern "C" void *aare_create_dfa(aare_ruleset_t *rules, size_t *size, dfaflags_t flags)
{
char *buffer = NULL;
label_nodes(rules->root);
if (flags & DFA_DUMP_TREE) {
cerr << "\nDFA: Expression Tree\n";
rules->root->dump(cerr);
cerr << "\n\n";
}
if (!(flags & DFA_CONTROL_NO_TREE_SIMPLE)) {
rules->root = simplify_tree(rules->root, flags);
if (flags & DFA_DUMP_SIMPLE_TREE) {
cerr << "\nDFA: Simplified Expression Tree\n";
rules->root->dump(cerr);
cerr << "\n\n";
}
}
DFA dfa(rules->root, flags);
if (flags & DFA_DUMP_STATES)
dfa.dump(cerr);
if (flags & DFA_DUMP_GRAPH)
dfa.dump_dot_graph(cerr);
map<uchar, uchar> eq;
if (flags & DFA_CONTROL_EQUIV) {
eq = dfa.equivalence_classes(flags);
dfa.apply_equivalence_classes(eq);
if (flags & DFA_DUMP_EQUIV) {
cerr << "\nDFA equivalence class\n";
dump_equivalence_classes(cerr, eq);
}
} else if (flags & DFA_DUMP_EQUIV)
cerr << "\nDFA did not generate an equivalence class\n";
if (dfa.verify_perms()) {
*size = 0;
return NULL;
}
stringstream stream;
TransitionTable transition_table(dfa, eq, flags);
if (flags & DFA_DUMP_TRANS_TABLE)
transition_table.dump(cerr);
transition_table.flex_table(stream, "");
stringbuf *buf = stream.rdbuf();
buf->pubseekpos(0);
*size = buf->in_avail();
buffer = (char *)malloc(*size);
if (!buffer)
return NULL;
buf->sgetn(buffer, *size);
return buffer;
}