apparmor/parser/libapparmor_re/expr-tree.h
John Johansen a31343c5f7 parser: fix expr MatchFlag dump
Match Flags convert output to hex but don't restore after outputting
the flag resulting in following numbers being hex encoded. This
results in dumps that can be confusing eg.

rule: \d2  ->  \x2 priority=1001 (0x4/0)< 0x4>

rule: \d7  ->  \a priority=3e9 (0x4/0)< 0x4>

rule: \d10  ->  \n priority=3e9 (0x4/0)< 0x4>

rule: \d9  ->  \t priority=3e9 (0x4/0)< 0x4>

rule: \d14  ->  \xe priority=1001 (0x4/0)< 0x4>

where priority=3e9 is the hex encoded priority 1001.

Signed-off-by: John Johansen <john.johansen@canonical.com>
2024-11-11 14:39:40 -08:00

1086 lines
27 KiB
C++

/*
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
* Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
* Copyright 2009-2013 Canonical Ltd.
*
* The libapparmor library is licensed under the terms of the GNU
* Lesser General Public License, version 2.1. Please see the file
* COPYING.LGPL.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Functions to create/manipulate an expression tree for regular expressions
* that have been parsed.
*
* The expression tree can be used directly after the parse creates it, or
* it can be factored so that the set of important nodes is smaller.
* Having a reduced set of important nodes generally results in a dfa that
* is closer to minimum (fewer redundant states are created). It also
* results in fewer important nodes in a the state set during subset
* construction resulting in less memory used to create a dfa.
*
* Generally it is worth doing expression tree simplification before dfa
* construction, if the regular expression tree contains any alternations.
* Even if the regular expression doesn't simplification should be fast
* enough that it can be used with minimal overhead.
*/
#ifndef __LIBAA_RE_EXPR_H
#define __LIBAA_RE_EXPR_H
#include <map>
#include <set>
#include <stack>
#include <ostream>
#include <stdint.h>
#include "../perms.h"
#include "apparmor_re.h"
using namespace std;
/*
* transchar - representative input character for state transitions
*
* the transchar is used as the leaf node in the expr tree created
* by parsing an input regex (parse.y), and is used to build both the
* states and the transitions for a state machine (hfa.{h,cc}) built
* from the expression tree.
*
* While the state machine is currently based on byte inputs the
* transchar abstraction allows for flexibility and the option of
* moving to a larger input in the future. It also allows the ability
* to specify out of band transitions.
*
* Out of band transitions allow for code to specify special transitions
* that can not be triggered by an input byte stream. As such out of
* band transitions can be used to separate logical units of a match.
*
* eg.
* you need to allow an arbitrary data match (.*) followed by an arbitrary
* string match ([^\x00]*), and make an acceptance dission based
* on both matches.
*
* One way to do this is to chain the two matches in a single state
* machine. However without an out of band transition, the matche pattern
* for the data match (.*) could also consume the input for the string match.
* To ensure the data pattern match cannot consume characters for the second
* match a special character is used. This prevents state machine
* generation from intermixing the two expressions. For string matches
* this can be achieved with the pattern.
* ([^\x00]*)\x00([\x00]*)
* since \x00 can not be matched by the first expression (and is not a
* valid character in a C string), the nul character can be used to
* separate the string match. This however is not possible when matching
* arbitrary data that can have any input character.
*
* Out of band transitions replace the \x00 transition in the string
* example with a new input transition that comes from the driver
* code. Once the first match is done, the driver supplies the non-input
* character, causing the state machine to transition to the second
* match pattern.
*
* Out of band transitions are specified using negative integers
* (-1..-32k). They llow for different transitions if needed (currently
* only -1 is used).
*
* Negative integers were chosen to represent out of band transitions
* because it makes the run time match simple, and also keeps the
* upper positive integer range open for future input character
* expansion.
*
* When a chfa is built, the out of band transition is encoded as
* a negative offset of the same value specified in the transchar from the
* state base base value. The check value at the negative offset will
* contain the owning state value. The chfa state machine is constructed
* in such a way that this value will always be in bounds, and only an
* unpack time verification is needed.
*/
class transchar {
public:
short c;
transchar(unsigned char a): c((unsigned short) a) {}
transchar(short a, bool oob __attribute__((unused))): c(a) {}
transchar(const transchar &a): c(a.c) {}
transchar(): c(0) {}
bool operator==(const transchar &rhs) const {
return this->c == rhs.c;
}
bool operator==(const int &rhs) const {
return this->c == rhs;
}
bool operator!=(const transchar &rhs) const {
return this->c != rhs.c;
}
bool operator>(const transchar &rhs) const {
return this->c > rhs.c;
}
bool operator<(const transchar &rhs) const {
return this->c < rhs.c;
}
bool operator<=(const transchar &rhs) const {
return this->c <= rhs.c;
}
transchar &operator++() { // prefix
(this->c)++;
return *this;
}
transchar operator++(int) { // postfix
transchar tmp(*this);
(this->c)++;
return tmp;
}
ostream &dump(ostream &os) const;
};
class Chars {
public:
set<transchar> chars;
typedef set<transchar>::iterator iterator;
iterator begin() { return chars.begin(); }
iterator end() { return chars.end(); }
Chars(): chars() {}
bool empty() const
{
return chars.empty();
}
std::size_t size() const
{
return chars.size();
}
iterator find(const transchar &key)
{
return chars.find(key);
}
pair<iterator,bool> insert(transchar c)
{
return chars.insert(c);
}
pair<iterator,bool> insert(char c)
{
transchar tmp(c);
return chars.insert(tmp);
}
};
ostream &operator<<(ostream &os, transchar c);
/* Compute the union of two sets. */
template<class T> set<T> operator+(const set<T> &a, const set<T> &b)
{
set<T> c(a);
c.insert(b.begin(), b.end());
return c;
}
/**
* When creating DFAs from regex trees, a DFA state is constructed from
* a set of important nodes in the syntax tree. This includes AcceptNodes,
* which indicate that when a match ends in a particular state, the
* regular expressions that the AcceptNode belongs to match.
*/
class Node;
class ImportantNode;
typedef set<ImportantNode *> NodeSet;
/**
* Text-dump a state (for debugging).
*/
ostream &operator<<(ostream &os, const NodeSet &state);
/**
* Out-edges from a state to another: we store the follow-set of Nodes
* for each input character that is not a default match in
* cases (i.e., following a CharNode or CharSetNode), and default
* matches in otherwise as well as in all matching explicit cases
* (i.e., following an AnyCharNode or NotCharSetNode). This avoids
* enumerating all the explicit tranitions for default matches.
*/
typedef struct Cases {
typedef map<transchar, NodeSet *>::iterator iterator;
iterator begin() { return cases.begin(); }
iterator end() { return cases.end(); }
Cases(): otherwise(0) { }
map<transchar, NodeSet *> cases;
NodeSet *otherwise;
} Cases;
ostream &operator<<(ostream &os, Node &node);
#define NODE_TYPE_NODE 0
#define NODE_TYPE_INNER (1 << 0)
#define NODE_TYPE_ONECHILD (1 << 1)
#define NODE_TYPE_TWOCHILD (1 << 2)
#define NODE_TYPE_LEAF (1 << 3)
#define NODE_TYPE_EPS (1 << 4)
#define NODE_TYPE_IMPORTANT (1 << 5)
#define NODE_TYPE_C (1 << 6)
#define NODE_TYPE_CHAR (1 << 7)
#define NODE_TYPE_CHARSET (1 << 8)
#define NODE_TYPE_NOTCHARSET (1 << 9)
#define NODE_TYPE_ANYCHAR (1 << 10)
#define NODE_TYPE_STAR (1 << 11)
#define NODE_TYPE_OPTIONAL (1 << 12)
#define NODE_TYPE_PLUS (1 << 13)
#define NODE_TYPE_CAT (1 << 14)
#define NODE_TYPE_ALT (1 << 15)
#define NODE_TYPE_SHARED (1 << 16)
#define NODE_TYPE_ACCEPT (1 << 17)
#define NODE_TYPE_MATCHFLAG (1 << 18)
#define NODE_TYPE_EXACTMATCHFLAG (1 << 19)
#define NODE_TYPE_DENYMATCHFLAG (1 << 20)
/* An abstract node in the syntax tree. */
class Node {
public:
Node(): nullable(false), type_flags(NODE_TYPE_NODE), label(0)
{
child[0] = child[1] = 0;
}
Node(Node *left): nullable(false), type_flags(NODE_TYPE_NODE), label(0)
{
child[0] = left;
child[1] = 0;
}
Node(Node *left, Node *right): nullable(false),
type_flags(NODE_TYPE_NODE), label(0)
{
child[0] = left;
child[1] = right;
}
virtual ~Node()
{
if (child[0])
child[0]->release();
if (child[1])
child[1]->release();
}
/**
* firstpos, lastpos, and followpos are used to convert the syntax tree
* to a DFA.
*
* firstpos holds nodes that can match the first character of a string
* that matches the syntax tree. For the regex 'a*bcd', firstpos holds
* the 'a' and 'b' nodes. firstpos is used to determine the start state
* of the DFA.
*
* lastpos is the same as firstpos for the last character. For the regex
* 'a*bcd', lastpos holds the 'd' node. lastpos is used to determine the
* accepting states of the DFA.
*
* followpos holds the set of nodes that can match a character directly
* after the current node. For the regexp 'a*bcd', the followpos of the
* 'a' node are the 'b' node and the 'a' node itself. followpos is used
* to determine the transitions of the DFA.
*
* nullable indicates that a node can match the empty string. It is used
* to compute firstpos and lastpos.
*
* See the "Dragon Book" 2nd Edition section 3.9.2 for an in-depth
* explanation.
*/
virtual void compute_nullable() { }
virtual void compute_firstpos() = 0;
virtual void compute_lastpos() = 0;
virtual void compute_followpos() { }
/*
* min_match_len determines the smallest string that can match the
* syntax tree. This is used to determine the priority of a regex.
*/
virtual int min_match_len() { return 0; }
/*
* contains_oob returns if the expression tree contains a oob character.
* oob characters indicate that the rest of the DFA matches has an
* out of band transition. This is used to compute min_match_len.
*/
virtual bool contains_oob() { return false; }
virtual int eq(Node *other) = 0;
virtual ostream &dump(ostream &os) = 0;
void dump_syntax_tree(ostream &os);
virtual void normalize(int dir)
{
if (child[dir])
child[dir]->normalize(dir);
if (child[!dir])
child[!dir]->normalize(dir);
}
/* return false if no work done */
virtual int normalize_eps(int dir __attribute__((unused))) { return 0; }
bool nullable;
NodeSet firstpos, lastpos, followpos;
/* child 0 is left, child 1 is right */
Node *child[2];
/*
* Bitmap that stores supported pointer casts for the Node, composed
* by the NODE_TYPE_* flags. This is used by is_type() as a substitute
* of costly dynamic_cast calls.
*/
unsigned type_flags;
bool is_type(unsigned type) { return type_flags & type; }
unsigned int label; /* unique number for debug etc */
/**
* We indirectly release Nodes through a virtual function because
* accept and Eps Nodes are shared, and must be treated specially.
* We could use full reference counting here but the indirect release
* is sufficient and has less overhead
*/
virtual void release(void) { delete this; }
};
class InnerNode: public Node {
public:
InnerNode(): Node() { type_flags |= NODE_TYPE_INNER; };
InnerNode(Node *left): Node(left) { type_flags |= NODE_TYPE_INNER; };
InnerNode(Node *left, Node *right): Node(left, right)
{
type_flags |= NODE_TYPE_INNER;
};
};
class OneChildNode: public InnerNode {
public:
OneChildNode(Node *left): InnerNode(left)
{
type_flags |= NODE_TYPE_ONECHILD;
};
};
class TwoChildNode: public InnerNode {
public:
TwoChildNode(Node *left, Node *right): InnerNode(left, right)
{
type_flags |= NODE_TYPE_TWOCHILD;
};
virtual int normalize_eps(int dir);
};
class LeafNode: public Node {
public:
LeafNode(): Node() { type_flags |= NODE_TYPE_LEAF; };
virtual void normalize(int dir __attribute__((unused))) { return; }
};
/* Match nothing (//). */
class EpsNode: public LeafNode {
public:
EpsNode(): LeafNode()
{
type_flags |= NODE_TYPE_EPS;
nullable = true;
label = 0;
}
void release(void)
{
/* don't delete Eps nodes because there is a single static
* instance shared by all trees. Look for epsnode in the code
*/
}
void compute_firstpos() { }
void compute_lastpos() { }
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_EPS))
return 1;
return 0;
}
ostream &dump(ostream &os)
{
return os << "[]";
}
};
/**
* Leaf nodes in the syntax tree are important to us: they describe the
* characters that the regular expression matches. We also consider
* AcceptNodes import: they indicate when a regular expression matches.
*/
class ImportantNode: public LeafNode {
public:
ImportantNode(): LeafNode() { type_flags |= NODE_TYPE_IMPORTANT; }
void compute_firstpos() { firstpos.insert(this); }
void compute_lastpos() { lastpos.insert(this); }
virtual void follow(Cases &cases) = 0;
virtual int is_accept(void) = 0;
virtual int is_postprocess(void) = 0;
};
/* common base class for all the different classes that contain
* character information.
*/
class CNode: public ImportantNode {
public:
CNode(): ImportantNode() { type_flags |= NODE_TYPE_C; }
int is_accept(void) { return false; }
int is_postprocess(void) { return false; }
};
/* Match one specific character (/c/). */
class CharNode: public CNode {
public:
CharNode(transchar c): c(c) { type_flags |= NODE_TYPE_CHAR; }
void follow(Cases &cases)
{
NodeSet **x = &cases.cases[c];
if (!*x) {
if (cases.otherwise && c.c >= 0)
*x = new NodeSet(*cases.otherwise);
else
*x = new NodeSet;
}
(*x)->insert(followpos.begin(), followpos.end());
}
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_CHAR)) {
CharNode *o = static_cast<CharNode *>(other);
return c == o->c;
}
return 0;
}
ostream &dump(ostream &os)
{
return os << c;
}
int min_match_len()
{
if (c < 0) {
// oob characters indicates end of string.
// note: does NOT currently calc match len
// base on NULL char separator transitions
// which some match rules use.
return 0;
}
return 1;
}
bool contains_oob() { return c < 0; }
transchar c;
};
/* Match a set of characters (/[abc]/). */
class CharSetNode: public CNode {
public:
CharSetNode(Chars &chars): chars(chars)
{
type_flags |= NODE_TYPE_CHARSET;
}
void follow(Cases &cases)
{
for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
NodeSet **x = &cases.cases[*i];
if (!*x) {
if (cases.otherwise && i->c >= 0)
*x = new NodeSet(*cases.otherwise);
else
*x = new NodeSet;
}
(*x)->insert(followpos.begin(), followpos.end());
}
}
int eq(Node *other)
{
if (!other->is_type(NODE_TYPE_CHARSET))
return 0;
CharSetNode *o = static_cast<CharSetNode *>(other);
if (chars.size() != o->chars.size())
return 0;
for (Chars::iterator i = chars.begin(), j = o->chars.begin();
i != chars.end() && j != o->chars.end(); i++, j++) {
if (*i != *j)
return 0;
}
return 1;
}
ostream &dump(ostream &os)
{
os << '[';
for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
os << *i;
return os << ']';
}
int min_match_len()
{
if (contains_oob()) {
return 0;
}
return 1;
}
bool contains_oob()
{
for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
if (*i < 0) {
return true;
}
}
return false;
}
Chars chars;
};
/* Match all except one character (/[^abc]/). */
class NotCharSetNode: public CNode {
public:
NotCharSetNode(Chars &chars): chars(chars)
{
type_flags |= NODE_TYPE_NOTCHARSET;
}
void follow(Cases &cases)
{
if (!cases.otherwise)
cases.otherwise = new NodeSet;
for (Chars::iterator j = chars.begin(); j != chars.end(); j++) {
NodeSet **x = &cases.cases[*j];
if (!*x)
*x = new NodeSet(*cases.otherwise);
}
/* Note: Add to the nonmatching characters after copying away
* the old otherwise state for the matching characters.
*/
cases.otherwise->insert(followpos.begin(), followpos.end());
for (Cases::iterator i = cases.begin(); i != cases.end();
i++) {
/* does not match oob transition chars */
if (i->first.c >=0 && chars.find(i->first) == chars.end())
i->second->insert(followpos.begin(),
followpos.end());
}
}
int eq(Node *other)
{
if (!other->is_type(NODE_TYPE_NOTCHARSET))
return 0;
NotCharSetNode *o = static_cast<NotCharSetNode *>(other);
if (chars.size() != o->chars.size())
return 0;
for (Chars::iterator i = chars.begin(), j = o->chars.begin();
i != chars.end() && j != o->chars.end(); i++, j++) {
if (*i != *j)
return 0;
}
return 1;
}
ostream &dump(ostream &os)
{
os << "[^";
for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
os << *i;
return os << ']';
}
int min_match_len()
{
/* Inverse match does not match any oob char at this time
* so only count characters
*/
return 1;
}
bool contains_oob()
{
for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
if (*i < 0) {
return false;
}
}
return true;
}
Chars chars;
};
/* Match any character (/./). */
class AnyCharNode: public CNode {
public:
AnyCharNode() { type_flags |= NODE_TYPE_ANYCHAR; }
void follow(Cases &cases)
{
if (!cases.otherwise)
cases.otherwise = new NodeSet;
cases.otherwise->insert(followpos.begin(), followpos.end());
for (Cases::iterator i = cases.begin(); i != cases.end();
i++)
/* does not match oob transition chars */
if (i->first.c >= 0)
i->second->insert(followpos.begin(), followpos.end());
}
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_ANYCHAR))
return 1;
return 0;
}
ostream &dump(ostream &os) { return os << "."; }
};
/* Match a node zero or more times. (This is a unary operator.) */
class StarNode: public OneChildNode {
public:
StarNode(Node *left): OneChildNode(left)
{
type_flags |= NODE_TYPE_STAR;
nullable = true;
}
void compute_firstpos() { firstpos = child[0]->firstpos; }
void compute_lastpos() { lastpos = child[0]->lastpos; }
void compute_followpos()
{
NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_STAR))
return child[0]->eq(other->child[0]);
return 0;
}
ostream &dump(ostream &os)
{
os << '(';
child[0]->dump(os);
return os << ")*";
}
bool contains_oob() { return child[0]->contains_oob(); }
};
/* Match a node zero or one times. */
class OptionalNode: public OneChildNode {
public:
OptionalNode(Node *left): OneChildNode(left)
{
type_flags |= NODE_TYPE_OPTIONAL;
nullable = true;
}
void compute_firstpos() { firstpos = child[0]->firstpos; }
void compute_lastpos() { lastpos = child[0]->lastpos; }
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_OPTIONAL))
return child[0]->eq(other->child[0]);
return 0;
}
ostream &dump(ostream &os)
{
os << '(';
child[0]->dump(os);
return os << ")?";
}
};
/* Match a node one or more times. (This is a unary operator.) */
class PlusNode: public OneChildNode {
public:
PlusNode(Node *left): OneChildNode(left)
{
type_flags |= NODE_TYPE_PLUS;
}
void compute_nullable() { nullable = child[0]->nullable; }
void compute_firstpos() { firstpos = child[0]->firstpos; }
void compute_lastpos() { lastpos = child[0]->lastpos; }
void compute_followpos()
{
NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other) {
if (other->is_type(NODE_TYPE_PLUS))
return child[0]->eq(other->child[0]);
return 0;
}
ostream &dump(ostream &os) {
os << '(';
child[0]->dump(os);
return os << ")+";
}
int min_match_len() { return child[0]->min_match_len(); }
bool contains_oob() { return child[0]->contains_oob(); }
};
/* Match a pair of consecutive nodes. */
class CatNode: public TwoChildNode {
public:
CatNode(Node *left, Node *right): TwoChildNode(left, right)
{
type_flags |= NODE_TYPE_CAT;
}
void compute_nullable()
{
nullable = child[0]->nullable && child[1]->nullable;
}
void compute_firstpos()
{
if (child[0]->nullable)
firstpos = child[0]->firstpos + child[1]->firstpos;
else
firstpos = child[0]->firstpos;
}
void compute_lastpos()
{
if (child[1]->nullable)
lastpos = child[0]->lastpos + child[1]->lastpos;
else
lastpos = child[1]->lastpos;
}
void compute_followpos()
{
NodeSet from = child[0]->lastpos, to = child[1]->firstpos;
for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_CAT)) {
if (!child[0]->eq(other->child[0]))
return 0;
return child[1]->eq(other->child[1]);
}
return 0;
}
ostream &dump(ostream &os)
{
child[0]->dump(os);
child[1]->dump(os);
return os;
}
void normalize(int dir);
int min_match_len()
{
int len = child[0]->min_match_len();
if (child[0]->contains_oob()) {
// oob characters are used to indicate when the DFA transitions
// from matching the path to matching the xattrs. If the left child
// contains an oob character, the right side doesn't contribute to
// the path match.
return len;
}
return len + child[1]->min_match_len();
}
bool contains_oob()
{
return child[0]->contains_oob() || child[1]->contains_oob();
}
};
/* Match one of two alternative nodes. */
class AltNode: public TwoChildNode {
public:
AltNode(Node *left, Node *right): TwoChildNode(left, right)
{
type_flags |= NODE_TYPE_ALT;
}
void compute_nullable()
{
nullable = child[0]->nullable || child[1]->nullable;
}
void compute_lastpos()
{
lastpos = child[0]->lastpos + child[1]->lastpos;
}
void compute_firstpos()
{
firstpos = child[0]->firstpos + child[1]->firstpos;
}
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_ALT)) {
if (!child[0]->eq(other->child[0]))
return 0;
return child[1]->eq(other->child[1]);
}
return 0;
}
ostream &dump(ostream &os)
{
os << '(';
child[0]->dump(os);
os << '|';
child[1]->dump(os);
os << ')';
return os;
}
void normalize(int dir);
int min_match_len()
{
int m1, m2;
m1 = child[0]->min_match_len();
m2 = child[1]->min_match_len();
if (m1 < m2) {
return m1;
}
return m2;
}
bool contains_oob()
{
return child[0]->contains_oob() || child[1]->contains_oob();
}
};
class SharedNode: public ImportantNode {
public:
SharedNode()
{
type_flags |= NODE_TYPE_SHARED;
}
void release(void)
{
/* don't delete SharedNodes via release as they are shared, and
* will be deleted when the table they are stored in is deleted
*/
}
void follow(Cases &cases __attribute__ ((unused)))
{
/* Nothing to follow. */
}
/* requires shared nodes to be common by pointer */
int eq(Node *other) { return (this == other); }
};
/**
* Indicate that a regular expression matches. An AcceptNode itself
* doesn't match anything, so it will never generate any transitions.
*/
class AcceptNode: public SharedNode {
public:
AcceptNode() { type_flags |= NODE_TYPE_ACCEPT; }
int is_accept(void) { return true; }
int is_postprocess(void) { return false; }
};
class MatchFlag: public AcceptNode {
public:
MatchFlag(int priority, perm32_t perms, perm32_t audit): priority(priority), perms(perms), audit(audit)
{
type_flags |= NODE_TYPE_MATCHFLAG;
}
ostream &dump(ostream &os) { return os << "< 0x" << hex << perms << std::dec << '>'; }
int priority;
perm32_t perms;
perm32_t audit;
};
class ExactMatchFlag: public MatchFlag {
public:
ExactMatchFlag(int priority, perm32_t perms, perm32_t audit): MatchFlag(priority, perms, audit)
{
type_flags |= NODE_TYPE_EXACTMATCHFLAG;
}
};
class DenyMatchFlag: public MatchFlag {
public:
DenyMatchFlag(int priority, perm32_t perms, perm32_t quiet): MatchFlag(priority, perms, quiet)
{
type_flags |= NODE_TYPE_DENYMATCHFLAG;
}
};
class PromptMatchFlag: public MatchFlag {
public:
PromptMatchFlag(int priority, perm32_t prompt, perm32_t audit): MatchFlag(priority, prompt, audit) {}
};
/* Traverse the syntax tree depth-first in an iterator-like manner. */
class depth_first_traversal {
stack<Node *>pos;
void push_left(Node *node) {
pos.push(node);
while (node->is_type(NODE_TYPE_INNER)) {
pos.push(node->child[0]);
node = node->child[0];
}
}
public:
depth_first_traversal(Node *node) { push_left(node); }
Node *operator*() { return pos.top(); }
Node *operator->() { return pos.top(); }
operator bool() { return !pos.empty(); }
void operator++(int)
{
Node *last = pos.top();
pos.pop();
if (!pos.empty()) {
/* no need to dynamic cast, as we just popped a node so
* the top node must be an inner node */
InnerNode *node = (InnerNode *) (pos.top());
if (node->child[1] && node->child[1] != last) {
push_left(node->child[1]);
}
}
}
};
struct node_counts {
int charnode;
int charset;
int notcharset;
int alt;
int plus;
int star;
int optional;
int any;
int cat;
};
extern EpsNode epsnode;
int debug_tree(Node *t);
Node *simplify_tree(Node *t, optflags const &opts);
void label_nodes(Node *root);
unsigned long hash_NodeSet(NodeSet *ns);
void flip_tree(Node *node);
class NodeVec {
public:
typedef ImportantNode ** iterator;
iterator begin() { return nodes; }
iterator end() { iterator t = nodes ? &nodes[len] : NULL; return t; }
unsigned long hash;
unsigned long len;
ImportantNode **nodes;
NodeVec(NodeSet *n)
{
hash = hash_NodeSet(n);
len = n->size();
nodes = new ImportantNode *[n->size()];
unsigned int j = 0;
for (NodeSet::iterator i = n->begin(); i != n->end(); i++, j++) {
nodes[j] = *i;
}
}
NodeVec(NodeSet *n, unsigned long h): hash(h)
{
len = n->size();
nodes = new ImportantNode *[n->size()];
ImportantNode **j = nodes;
for (NodeSet::iterator i = n->begin(); i != n->end(); i++) {
*(j++) = *i;
}
}
~NodeVec()
{
delete [] nodes;
}
unsigned long size()const { return len; }
bool operator<(NodeVec const &rhs)const
{
if (hash == rhs.hash) {
if (len == rhs.size()) {
for (unsigned int i = 0; i < len; i++) {
if (nodes[i] != rhs.nodes[i])
return nodes[i] < rhs.nodes[i];
}
return false;
}
return len < rhs.size();
}
return hash < rhs.hash;
}
};
class CacheStats {
public:
unsigned long dup, sum, max;
CacheStats(void): dup(0), sum(0), max(0) { };
void clear(void) { dup = sum = max = 0; }
virtual unsigned long size(void) const = 0;
};
struct deref_less_than {
bool operator()(NodeVec * const &lhs, NodeVec * const &rhs)const
{
return *lhs < *rhs;
}
};
class NodeVecCache: public CacheStats {
public:
set<NodeVec *, deref_less_than> cache;
NodeVecCache(void): cache() { };
~NodeVecCache() { clear(); };
virtual unsigned long size(void) const { return cache.size(); }
void clear()
{
for (set<NodeVec *>::iterator i = cache.begin();
i != cache.end(); i++) {
delete *i;
}
cache.clear();
CacheStats::clear();
}
NodeVec *insert(NodeSet *nodes)
{
if (!nodes)
return NULL;
pair<set<NodeVec *>::iterator,bool> uniq;
NodeVec *nv = new NodeVec(nodes);
uniq = cache.insert(nv);
if (uniq.second == false) {
delete nv;
dup++;
} else {
sum += nodes->size();
if (nodes->size() > max)
max = nodes->size();
}
delete(nodes);
return (*uniq.first);
}
};
#endif /* __LIBAA_RE_EXPR */