apparmor/parser/libapparmor_re/hfa.h
John Johansen 5e361a4a05 Fix dfa minimization to deal with exec conflicts
Minimization was failing because it was too agressive.  It was minimizing
as if there was only 1 accept condition.  This allowed it to remove more
states but at the cost of loosing unique permission sets, they where
being combined into single commulative perms.  This means that audit,
deny, xtrans, ... info on one path would be applied to all other paths
that it was combined with during minimization.

This means that we need to retain the unique accept states, not allowing
them to be combined into a single state.  To do this we put each unique
permission set into its own partition at the start of minimization.

The states within a partition have the  same permissions and can be combined
within the other states in the partition as the loss of unique path
information is will not result in a conflict.

This is similar to what perm hashing used to do but deny information is
still being correctly applied and carried.

Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-By: Steve Beattie <sbeattie@ubuntu.com>
2012-03-09 04:20:19 -08:00

455 lines
10 KiB
C++

/*
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
* Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
* Copyright 2009-2012 Canonical Ltd.
*
* The libapparmor library is licensed under the terms of the GNU
* Lesser General Public License, version 2.1. Please see the file
* COPYING.LGPL.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Base of implementation based on the Lexical Analysis chapter of:
* Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman:
* Compilers: Principles, Techniques, and Tools (The "Dragon Book"),
* Addison-Wesley, 1986.
*/
#ifndef __LIBAA_RE_HFA_H
#define __LIBAA_RE_HFA_H
#include <list>
#include <map>
#include <vector>
#include <stdint.h>
#include "expr-tree.h"
class State;
typedef map<uchar, State *> StateTrans;
typedef list<State *> Partition;
#include "../immunix.h"
class perms_t {
public:
perms_t(void) throw(int): allow(0), deny(0), audit(0), quiet(0), exact(0) { };
bool is_null(void) { return !(allow | deny | audit | quiet); }
void clear(void) { allow = deny = audit = quiet = 0; }
void add(perms_t &rhs)
{
deny |= rhs.deny;
if (!is_merged_x_consistent(allow & ALL_USER_EXEC,
rhs.allow & ALL_USER_EXEC)) {
if ((exact & AA_USER_EXEC_TYPE) &&
!(rhs.exact & AA_USER_EXEC_TYPE)) {
/* do nothing */
} else if ((rhs.exact & AA_USER_EXEC_TYPE) &&
!(exact & AA_USER_EXEC_TYPE)) {
allow = (allow & ~AA_USER_EXEC_TYPE) |
(rhs.allow & AA_USER_EXEC_TYPE);
} else
throw 1;
} else
allow |= rhs.allow & AA_USER_EXEC_TYPE;
if (!is_merged_x_consistent(allow & ALL_OTHER_EXEC,
rhs.allow & ALL_OTHER_EXEC)) {
if ((exact & AA_OTHER_EXEC_TYPE) &&
!(rhs.exact & AA_OTHER_EXEC_TYPE)) {
/* do nothing */
} else if ((rhs.exact & AA_OTHER_EXEC_TYPE) &&
!(exact & AA_OTHER_EXEC_TYPE)) {
allow = (allow & ~AA_OTHER_EXEC_TYPE) |
(rhs.allow & AA_OTHER_EXEC_TYPE);
} else
throw 1;
} else
allow |= rhs.allow & AA_OTHER_EXEC_TYPE;
allow = (allow | (rhs.allow & ~ALL_AA_EXEC_TYPE));
audit |= rhs.audit;
quiet = (quiet | rhs.quiet);
/*
if (exec & AA_USER_EXEC_TYPE &&
(exec & AA_USER_EXEC_TYPE) != (allow & AA_USER_EXEC_TYPE))
throw 1;
if (exec & AA_OTHER_EXEC_TYPE &&
(exec & AA_OTHER_EXEC_TYPE) != (allow & AA_OTHER_EXEC_TYPE))
throw 1;
*/
}
int apply_and_clear_deny(void)
{
if (deny) {
allow &= ~deny;
quiet &= deny;
deny = 0;
return is_null();
}
return 0;
}
bool operator<(perms_t const &rhs)const
{
if (allow < rhs.allow)
return allow < rhs.allow;
if (deny < rhs.deny)
return deny < rhs.deny;
if (audit < rhs.audit)
return audit < rhs.audit;
return quiet < rhs.quiet;
}
uint32_t allow, deny, audit, quiet, exact;
};
int accept_perms(NodeSet *state, perms_t &perms);
/*
* hashedNodes - for efficient set comparison
*/
class hashedNodeSet {
public:
unsigned long hash;
NodeSet *nodes;
hashedNodeSet(NodeSet *n): nodes(n)
{
hash = hash_NodeSet(n);
}
bool operator<(hashedNodeSet const &rhs)const
{
if (hash == rhs.hash) {
if (nodes->size() == rhs.nodes->size())
return *nodes < *(rhs.nodes);
else
return nodes->size() < rhs.nodes->size();
} else {
return hash < rhs.hash;
}
}
};
class hashedNodeVec {
public:
typedef ImportantNode ** iterator;
iterator begin() { return nodes; }
iterator end() { iterator t = nodes ? &nodes[len] : NULL; return t; }
unsigned long hash;
unsigned long len;
ImportantNode **nodes;
hashedNodeVec(NodeSet *n)
{
hash = hash_NodeSet(n);
len = n->size();
nodes = new ImportantNode *[n->size()];
unsigned int j = 0;
for (NodeSet::iterator i = n->begin(); i != n->end(); i++, j++) {
nodes[j] = *i;
}
}
hashedNodeVec(NodeSet *n, unsigned long h): hash(h)
{
len = n->size();
nodes = new ImportantNode *[n->size()];
ImportantNode **j = nodes;
for (NodeSet::iterator i = n->begin(); i != n->end(); i++) {
*(j++) = *i;
}
}
~hashedNodeVec()
{
delete nodes;
}
unsigned long size()const { return len; }
bool operator<(hashedNodeVec const &rhs)const
{
if (hash == rhs.hash) {
if (len == rhs.size()) {
for (unsigned int i = 0; i < len; i++) {
if (nodes[i] != rhs.nodes[i])
return nodes[i] < rhs.nodes[i];
}
return false;
}
return len < rhs.size();
}
return hash < rhs.hash;
}
};
class CacheStats {
public:
unsigned long dup, sum, max;
CacheStats(void): dup(0), sum(0), max(0) { };
void clear(void) { dup = sum = max = 0; }
virtual unsigned long size(void) const = 0;
};
class NodeCache: public CacheStats {
public:
set<hashedNodeSet> cache;
NodeCache(void): cache() { };
~NodeCache() { clear(); };
virtual unsigned long size(void) const { return cache.size(); }
void clear()
{
for (set<hashedNodeSet>::iterator i = cache.begin();
i != cache.end(); i++) {
delete i->nodes;
}
cache.clear();
CacheStats::clear();
}
NodeSet *insert(NodeSet *nodes)
{
if (!nodes)
return NULL;
pair<set<hashedNodeSet>::iterator,bool> uniq;
uniq = cache.insert(hashedNodeSet(nodes));
if (uniq.second == false) {
delete(nodes);
dup++;
} else {
sum += nodes->size();
if (nodes->size() > max)
max = nodes->size();
}
return uniq.first->nodes;
}
};
struct deref_less_than {
bool operator()(hashedNodeVec * const &lhs, hashedNodeVec * const &rhs)const
{
return *lhs < *rhs;
}
};
class NodeVecCache: public CacheStats {
public:
set<hashedNodeVec *, deref_less_than> cache;
NodeVecCache(void): cache() { };
~NodeVecCache() { clear(); };
virtual unsigned long size(void) const { return cache.size(); }
void clear()
{
for (set<hashedNodeVec *>::iterator i = cache.begin();
i != cache.end(); i++) {
delete *i;
}
cache.clear();
CacheStats::clear();
}
hashedNodeVec *insert(NodeSet *nodes)
{
if (!nodes)
return NULL;
pair<set<hashedNodeVec *>::iterator,bool> uniq;
hashedNodeVec *nv = new hashedNodeVec(nodes);
uniq = cache.insert(nv);
if (uniq.second == false) {
delete nv;
dup++;
} else {
sum += nodes->size();
if (nodes->size() > max)
max = nodes->size();
}
delete(nodes);
return (*uniq.first);
}
};
/*
* ProtoState - NodeSet and ancillery information used to create a state
*/
class ProtoState {
public:
hashedNodeVec *nnodes;
NodeSet *anodes;
ProtoState(hashedNodeVec *n, NodeSet *a = NULL): nnodes(n), anodes(a) { };
bool operator<(ProtoState const &rhs)const
{
if (nnodes == rhs.nnodes)
return anodes < rhs.anodes;
return nnodes < rhs.nnodes;
}
unsigned long size(void)
{
if (anodes)
return nnodes->size() + anodes->size();
return nnodes->size();
}
};
/*
* State - DFA individual state information
* label: a unique label to identify the state used for pretty printing
* the non-matching state is setup to have label == 0 and
* the start state is setup to have label == 1
* audit: the audit permission mask for the state
* accept: the accept permissions for the state
* trans: set of transitions from this state
* otherwise: the default state for transitions not in @trans
* parition: Is a temporary work variable used during dfa minimization.
* it can be replaced with a map, but that is slower and uses more
* memory.
* nodes: Is a temporary work variable used during dfa creation. It can
* be replaced by using the nodemap, but that is slower
*/
class State {
public:
State(int l, ProtoState &n, State *other) throw(int):
label(l), perms(), trans()
{
int error;
if (other)
otherwise = other;
else
otherwise = this;
proto = n;
/* Compute permissions associated with the State. */
error = accept_perms(n.anodes, perms);
if (error) {
//cerr << "Failing on accept perms " << error << "\n";
throw error;
}
};
State *next(uchar c) {
StateTrans::iterator i = trans.find(c);
if (i != trans.end())
return i->second;
return otherwise;
};
int apply_and_clear_deny(void) { return perms.apply_and_clear_deny(); }
int label;
perms_t perms;
StateTrans trans;
State *otherwise;
/* temp storage for State construction */
union {
Partition *partition;
ProtoState proto;
};
};
ostream &operator<<(ostream &os, const State &state);
class NodeMap: public CacheStats
{
public:
typedef map<ProtoState, State *>::iterator iterator;
iterator begin() { return cache.begin(); }
iterator end() { return cache.end(); }
map<ProtoState, State *> cache;
NodeMap(void): cache() { };
~NodeMap() { clear(); };
virtual unsigned long size(void) const { return cache.size(); }
void clear()
{
cache.clear();
CacheStats::clear();
}
pair<iterator,bool> insert(ProtoState &proto, State *state)
{
pair<iterator,bool> uniq;
uniq = cache.insert(make_pair(proto, state));
if (uniq.second == false) {
dup++;
} else {
sum += proto.size();
if (proto.size() > max)
max = proto.size();
}
return uniq;
}
};
/* Transitions in the DFA. */
class DFA {
void dump_node_to_dfa(void);
State *add_new_state(NodeSet *nodes, State *other);
void update_state_transitions(State *state);
/* temporary values used during computations */
NodeCache anodes_cache;
NodeVecCache nnodes_cache;
NodeMap node_map;
list<State *> work_queue;
public:
DFA(Node *root, dfaflags_t flags);
virtual ~DFA();
State *match_len(State *state, const char *str, size_t len);
State *match_until(State *state, const char *str, const char term);
State *match(const char *str);
void remove_unreachable(dfaflags_t flags);
bool same_mappings(State *s1, State *s2);
size_t hash_trans(State *s);
void minimize(dfaflags_t flags);
int apply_and_clear_deny(void);
void dump(ostream &os);
void dump_dot_graph(ostream &os);
void dump_uniq_perms(const char *s);
map<uchar, uchar> equivalence_classes(dfaflags_t flags);
void apply_equivalence_classes(map<uchar, uchar> &eq);
Node *root;
State *nonmatching, *start;
Partition states;
};
void dump_equivalence_classes(ostream &os, map<uchar, uchar> &eq);
#endif /* __LIBAA_RE_HFA_H */