apparmor/parser/libapparmor_re/aare_rules.cc
Steve Beattie 9c50ff9fb3 parser - terminate search early if wildcards are discovered
This patch is a very minor optimization to the search to determine
whether a given rule is an exact match or not. If a wildcard rule
(i.e.  an inexact match) is discovered, exact_match is set to 0,
so we don't need to continue the tree traversal.

Signed-off-by: Steve Beattie <steve@nxnw.org>
Acked-by: John Johansen <john.johansen@canonical.com>
2013-10-14 14:36:05 -07:00

338 lines
8.8 KiB
C++

/*
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
* Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
* Copyright 2009-2013 Canonical Ltd. (All rights reserved)
*
* The libapparmor library is licensed under the terms of the GNU
* Lesser General Public License, version 2.1. Please see the file
* COPYING.LGPL.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Wrapper around the dfa to convert aa rules into a dfa
*/
#include <ostream>
#include <iostream>
#include <fstream>
#include <sstream>
#include <ext/stdio_filebuf.h>
#include <assert.h>
#include <stdlib.h>
#include "aare_rules.h"
#include "expr-tree.h"
#include "parse.h"
#include "hfa.h"
#include "chfa.h"
#include "../immunix.h"
struct aare_ruleset {
int reverse;
Node *root;
};
aare_ruleset_t *aare_new_ruleset(int reverse)
{
aare_ruleset_t *container = (aare_ruleset_t *) malloc(sizeof(aare_ruleset_t));
if (!container)
return NULL;
container->root = NULL;
container->reverse = reverse;
return container;
}
void aare_delete_ruleset(aare_ruleset_t *rules)
{
if (rules) {
if (rules->root)
rules->root->release();
free(rules);
}
aare_reset_matchflags();
}
int aare_add_rule(aare_ruleset_t *rules, const char *rule, int deny,
uint32_t perms, uint32_t audit, dfaflags_t flags)
{
return aare_add_rule_vec(rules, deny, perms, audit, 1, &rule, flags);
}
#define FLAGS_WIDTH 2
#define MATCH_FLAGS_SIZE (sizeof(uint32_t) * 8 - 1)
MatchFlag *match_flags[FLAGS_WIDTH][MATCH_FLAGS_SIZE];
DenyMatchFlag *deny_flags[FLAGS_WIDTH][MATCH_FLAGS_SIZE];
#define EXEC_MATCH_FLAGS_SIZE (AA_EXEC_COUNT *2 * 2 * 2) /* double for each of ix pux, unsafe x bits * u::o */
MatchFlag *exec_match_flags[FLAGS_WIDTH][EXEC_MATCH_FLAGS_SIZE]; /* mods + unsafe + ix + pux * u::o */
ExactMatchFlag *exact_match_flags[FLAGS_WIDTH][EXEC_MATCH_FLAGS_SIZE]; /* mods + unsafe + ix + pux *u::o */
void aare_reset_matchflags(void)
{
uint32_t i, j;
#define RESET_FLAGS(group, size) { \
for (i = 0; i < FLAGS_WIDTH; i++) { \
for (j = 0; j < size; j++) { \
if ((group)[i][j]) delete (group)[i][j]; \
(group)[i][j] = NULL; \
} \
} \
}
RESET_FLAGS(match_flags, MATCH_FLAGS_SIZE);
RESET_FLAGS(deny_flags, MATCH_FLAGS_SIZE);
RESET_FLAGS(exec_match_flags, EXEC_MATCH_FLAGS_SIZE);
RESET_FLAGS(exact_match_flags, EXEC_MATCH_FLAGS_SIZE);
#undef RESET_FLAGS
}
int aare_add_rule_vec(aare_ruleset_t *rules, int deny,
uint32_t perms, uint32_t audit,
int count, const char **rulev, dfaflags_t flags)
{
Node *tree = NULL, *accept;
int exact_match;
uint32_t allow = perms;
assert(perms != 0);
if (regex_parse(&tree, rulev[0]))
return 0;
for (int i = 1; i < count; i++) {
Node *subtree = NULL;
Node *node = new CharNode(0);
if (!node)
return 0;
tree = new CatNode(tree, node);
if (regex_parse(&subtree, rulev[i]))
return 0;
tree = new CatNode(tree, subtree);
}
/*
* Check if we have an expression with or without wildcards. This
* determines how exec modifiers are merged in accept_perms() based
* on how we split permission bitmasks here.
*/
exact_match = 1;
for (depth_first_traversal i(tree); i && exact_match; i++) {
if (dynamic_cast<StarNode *>(*i) ||
dynamic_cast<PlusNode *>(*i) ||
dynamic_cast<AnyCharNode *>(*i) ||
dynamic_cast<CharSetNode *>(*i) ||
dynamic_cast<NotCharSetNode *>(*i))
exact_match = 0;
}
if (rules->reverse)
flip_tree(tree);
/* 0x7f == 4 bits x mods + 1 bit unsafe mask + 1 bit ix, + 1 pux after shift */
#define EXTRACT_X_INDEX(perm, shift) (((perm) >> (shift + 7)) & 0x7f)
//if (perms & ALL_AA_EXEC_TYPE && (!perms & AA_EXEC_BITS))
// fprintf(stderr, "adding X rule without MAY_EXEC: 0x%x %s\n", perms, rulev[0]);
//if (perms & ALL_EXEC_TYPE)
// fprintf(stderr, "adding X rule %s 0x%x\n", rulev[0], perms);
//if (audit)
//fprintf(stderr, "adding rule with audit bits set: 0x%x %s\n", audit, rulev[0]);
//if (perms & AA_CHANGE_HAT)
// fprintf(stderr, "adding change_hat rule %s\n", rulev[0]);
/* the permissions set is assumed to be non-empty if any audit
* bits are specified */
accept = NULL;
for (unsigned int n = 0; perms && n < (sizeof(perms) * 8); n++) {
uint32_t mask = 1 << n;
if (!(perms & mask))
continue;
int ai = audit & mask ? 1 : 0;
perms &= ~mask;
Node *flag;
if (mask & ALL_AA_EXEC_TYPE)
/* these cases are covered by EXEC_BITS */
continue;
if (deny) {
if (deny_flags[ai][n]) {
flag = deny_flags[ai][n];
} else {
//fprintf(stderr, "Adding deny ai %d mask 0x%x audit 0x%x\n", ai, mask, audit & mask);
deny_flags[ai][n] = new DenyMatchFlag(mask, audit & mask);
flag = deny_flags[ai][n];
}
} else if (mask & AA_EXEC_BITS) {
uint32_t eperm = 0;
uint32_t index = 0;
if (mask & AA_USER_EXEC) {
eperm = mask | (perms & AA_USER_EXEC_TYPE);
index = EXTRACT_X_INDEX(eperm, AA_USER_SHIFT);
} else {
eperm = mask | (perms & AA_OTHER_EXEC_TYPE);
index = EXTRACT_X_INDEX(eperm, AA_OTHER_SHIFT) + (AA_EXEC_COUNT << 2);
}
//fprintf(stderr, "index %d eperm 0x%x\n", index, eperm);
if (exact_match) {
if (exact_match_flags[ai][index]) {
flag = exact_match_flags[ai][index];
} else {
exact_match_flags[ai][index] = new ExactMatchFlag(eperm, audit & mask);
flag = exact_match_flags[ai][index];
}
} else {
if (exec_match_flags[ai][index]) {
flag = exec_match_flags[ai][index];
} else {
exec_match_flags[ai][index] = new MatchFlag(eperm, audit & mask);
flag = exec_match_flags[ai][index];
}
}
} else {
if (match_flags[ai][n]) {
flag = match_flags[ai][n];
} else {
match_flags[ai][n] = new MatchFlag(mask, audit & mask);
flag = match_flags[ai][n];
}
}
if (accept)
accept = new AltNode(accept, flag);
else
accept = flag;
} /* for ... */
if (flags & DFA_DUMP_RULE_EXPR) {
cerr << "rule: ";
cerr << rulev[0];
for (int i = 1; i < count; i++) {
cerr << "\\x00";
cerr << rulev[i];
}
cerr << " -> ";
tree->dump(cerr);
if (deny)
cerr << " deny";
cerr << " (0x" << hex << allow <<"/" << audit << dec << ")";
accept->dump(cerr);
cerr << "\n\n";
}
if (rules->root)
rules->root = new AltNode(rules->root, new CatNode(tree, accept));
else
rules->root = new CatNode(tree, accept);
return 1;
}
/* create a dfa from the ruleset
* returns: buffer contain dfa tables, @size set to the size of the tables
* else NULL on failure
*/
void *aare_create_dfa(aare_ruleset_t *rules, size_t *size,
dfaflags_t flags)
{
char *buffer = NULL;
label_nodes(rules->root);
if (flags & DFA_DUMP_TREE) {
cerr << "\nDFA: Expression Tree\n";
rules->root->dump(cerr);
cerr << "\n\n";
}
if (flags & DFA_CONTROL_TREE_SIMPLE) {
rules->root = simplify_tree(rules->root, flags);
if (flags & DFA_DUMP_SIMPLE_TREE) {
cerr << "\nDFA: Simplified Expression Tree\n";
rules->root->dump(cerr);
cerr << "\n\n";
}
}
stringstream stream;
try {
DFA dfa(rules->root, flags);
if (flags & DFA_DUMP_UNIQ_PERMS)
dfa.dump_uniq_perms("dfa");
if (flags & DFA_CONTROL_MINIMIZE) {
dfa.minimize(flags);
if (flags & DFA_DUMP_MIN_UNIQ_PERMS)
dfa.dump_uniq_perms("minimized dfa");
}
if (flags & DFA_CONTROL_FILTER_DENY &&
flags & DFA_CONTROL_MINIMIZE &&
dfa.apply_and_clear_deny()) {
/* Do a second minimization pass as removal of deny
* information has moved some states from accepting
* to none accepting partitions
*
* TODO: add this as a tail pass to minimization
* so we don't need to do a full second pass
*/
dfa.minimize(flags);
if (flags & DFA_DUMP_MIN_UNIQ_PERMS)
dfa.dump_uniq_perms("minimized dfa");
}
if (flags & DFA_CONTROL_REMOVE_UNREACHABLE)
dfa.remove_unreachable(flags);
if (flags & DFA_DUMP_STATES)
dfa.dump(cerr);
if (flags & DFA_DUMP_GRAPH)
dfa.dump_dot_graph(cerr);
map<uchar, uchar> eq;
if (flags & DFA_CONTROL_EQUIV) {
eq = dfa.equivalence_classes(flags);
dfa.apply_equivalence_classes(eq);
if (flags & DFA_DUMP_EQUIV) {
cerr << "\nDFA equivalence class\n";
dump_equivalence_classes(cerr, eq);
}
} else if (flags & DFA_DUMP_EQUIV)
cerr << "\nDFA did not generate an equivalence class\n";
CHFA chfa(dfa, eq, flags);
if (flags & DFA_DUMP_TRANS_TABLE)
chfa.dump(cerr);
chfa.flex_table(stream, "");
}
catch(int error) {
*size = 0;
return NULL;
}
stringbuf *buf = stream.rdbuf();
buf->pubseekpos(0);
*size = buf->in_avail();
buffer = (char *)malloc(*size);
if (!buffer)
return NULL;
buf->sgetn(buffer, *size);
return buffer;
}