apparmor/parser/libapparmor_re/hfa.h
John Johansen 50452e1147 parser: add a hfa dump that matches the renumbered chfa
Construction of the chfa can reorder states from what the numbering
given during the hfa constuctions because of reordering for better
compression, dead state removal to ensure better packing etc.

This however means the dfa dump is difficult (it is possible using
multiple dumpes) to match up to the chfa that the kernel is
using. Make this easier by making the dfa dump be able to take the
emapping as input, and provide an option to dump the chfa equivalent
hfa.

Renumbered states will show up as {new <== {orig}} in the dump

Eg.
--D dfa-states
{1} <== priority (allow/deny/prompt/audit/quiet)
{5} 0 (0x 4/0//0/0/0)

{1} perms: none
    0x2 -> {5}  0 (0x 4/0//0/0/0)
    0x4 -> {5}  0 (0x 4/0//0/0/0)
    \a 0x7 -> {5}  0 (0x 4/0//0/0/0)
    \t 0x9 -> {5}  0 (0x 4/0//0/0/0)
    \n 0xa -> {5}  0 (0x 4/0//0/0/0)
    \  0x20 -> {5}  0 (0x 4/0//0/0/0)
    4 0x34 -> {3}
{3} perms: none
    0x0 -> {6}
{6} perms: none
    1 0x31 -> {5}  0 (0x 4/0//0/0/0)

-D dfa-compressed-states
{1} <== priority (allow/deny/prompt/audit/quiet)
{2 == {5}} 0 (0x 4/0//0/0/0)

{1} perms: none
    0x2 -> {2 == {5}}  0 (0x 4/0//0/0/0)
    0x4 -> {2 == {5}}  0 (0x 4/0//0/0/0)
    \a 0x7 -> {2 == {5}}  0 (0x 4/0//0/0/0)
    \t 0x9 -> {2 == {5}}  0 (0x 4/0//0/0/0)
    \n 0xa -> {2 == {5}}  0 (0x 4/0//0/0/0)
    \  0x20 -> {2 == {5}}  0 (0x 4/0//0/0/0)
    4 0x34 -> {3}
{3} perms: none
    0x0 -> {4 == {6}}
{4 == {6}} perms: none
    1 0x31 -> {2 == {5}}  0 (0x 4/0//0/0/0)

Signed-off-by: John Johansen <john.johansen@canonical.com>
2025-01-03 14:18:50 -08:00

416 lines
11 KiB
C++

/*
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
* Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
* Copyright 2009-2012 Canonical Ltd.
*
* The libapparmor library is licensed under the terms of the GNU
* Lesser General Public License, version 2.1. Please see the file
* COPYING.LGPL.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Base of implementation based on the Lexical Analysis chapter of:
* Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman:
* Compilers: Principles, Techniques, and Tools (The "Dragon Book"),
* Addison-Wesley, 1986.
*/
#ifndef __LIBAA_RE_HFA_H
#define __LIBAA_RE_HFA_H
#include <list>
#include <map>
#include <vector>
#include <iostream>
#include <assert.h>
#include <limits.h>
#include <stdint.h>
#include "expr-tree.h"
#include "policy_compat.h"
#include "../rule.h"
extern int prompt_compat_mode;
#define DiffEncodeFlag 1
class State;
typedef map<transchar, State *> StateTrans;
typedef list<State *> Partition;
#include "../immunix.h"
ostream &operator<<(ostream &os, const State &state);
ostream &operator<<(ostream &os, State &state);
class perms_t {
public:
perms_t(void): priority(MIN_INTERNAL_PRIORITY), allow(0), deny(0), prompt(0), audit(0), quiet(0), exact(0) { };
bool is_accept(void) { return (allow | deny | prompt | audit | quiet); }
void dump_header(ostream &os)
{
os << "priority (allow/deny/prompt/audit/quiet)";
}
void dump(ostream &os)
{
os << " " << priority << " (0x " << hex
<< allow << "/" << deny << "/" << "/" << prompt << "/" << audit << "/" << quiet
<< ')' << dec;
}
void clear(void) {
priority = MIN_INTERNAL_PRIORITY;
allow = deny = prompt = audit = quiet = exact = 0;
}
void clear(int p) {
priority = p;
allow = deny = prompt = audit = quiet = exact = 0;
}
void add(perms_t &rhs, bool filedfa)
{
if (priority > rhs.priority)
return;
if (priority < rhs.priority) {
*this = rhs;
return;
} //else if (rhs.priority == priority) {
deny |= rhs.deny;
if (filedfa && !is_merged_x_consistent(allow & ALL_USER_EXEC,
rhs.allow & ALL_USER_EXEC)) {
if ((exact & AA_USER_EXEC_TYPE) &&
!(rhs.exact & AA_USER_EXEC_TYPE)) {
/* do nothing */
} else if ((rhs.exact & AA_USER_EXEC_TYPE) &&
!(exact & AA_USER_EXEC_TYPE)) {
allow = (allow & ~AA_USER_EXEC_TYPE) |
(rhs.allow & AA_USER_EXEC_TYPE);
} else
throw 1;
} else if (filedfa)
allow |= rhs.allow & AA_USER_EXEC_TYPE;
if (filedfa && !is_merged_x_consistent(allow & ALL_OTHER_EXEC,
rhs.allow & ALL_OTHER_EXEC)) {
if ((exact & AA_OTHER_EXEC_TYPE) &&
!(rhs.exact & AA_OTHER_EXEC_TYPE)) {
/* do nothing */
} else if ((rhs.exact & AA_OTHER_EXEC_TYPE) &&
!(exact & AA_OTHER_EXEC_TYPE)) {
allow = (allow & ~AA_OTHER_EXEC_TYPE) |
(rhs.allow & AA_OTHER_EXEC_TYPE);
} else
throw 1;
} else if (filedfa)
allow |= rhs.allow & AA_OTHER_EXEC_TYPE;
if (filedfa)
allow = (allow | (rhs.allow & ~ALL_AA_EXEC_TYPE));
else
allow |= rhs.allow;
prompt |= rhs.prompt;
audit |= rhs.audit;
quiet = (quiet | rhs.quiet);
/*
if (exec & AA_USER_EXEC_TYPE &&
(exec & AA_USER_EXEC_TYPE) != (allow & AA_USER_EXEC_TYPE))
throw 1;
if (exec & AA_OTHER_EXEC_TYPE &&
(exec & AA_OTHER_EXEC_TYPE) != (allow & AA_OTHER_EXEC_TYPE))
throw 1;
*/
}
/* returns true if perm is no longer accept */
int apply_and_clear_deny(void)
{
if (deny) {
allow &= ~deny;
exact &= ~deny;
prompt &= ~deny;
/* don't change audit or quiet based on clearing
* deny at this stage. This was made unique in
* accept_perms, and the info about whether
* we are auditing or quieting based on the explicit
* deny has been discarded and can only be inferred.
* But we know it is correct from accept_perms()
* audit &= deny;
* quiet &= deny;
*/
deny = 0;
return !is_accept();
}
return 0;
}
bool operator<(perms_t const &rhs)const
{
if (priority < rhs.priority)
return priority < rhs.priority;
if (allow < rhs.allow)
return allow < rhs.allow;
if (deny < rhs.deny)
return deny < rhs.deny;
if (prompt < rhs.prompt)
return prompt < rhs.prompt;
if (audit < rhs.audit)
return audit < rhs.audit;
return quiet < rhs.quiet;
}
int priority;
perm32_t allow, deny, prompt, audit, quiet, exact;
};
int accept_perms(NodeVec *state, perms_t &perms, bool filedfa);
/*
* ProtoState - NodeSet and ancillery information used to create a state
*/
class ProtoState {
public:
NodeVec *nnodes;
NodeVec *anodes;
/* init is used instead of a constructor because ProtoState is used
* in a union
*/
void init(NodeVec *n, NodeVec *a = NULL)
{
nnodes = n;
anodes = a;
}
bool operator<(ProtoState const &rhs)const
{
if (nnodes == rhs.nnodes)
return anodes < rhs.anodes;
return nnodes < rhs.nnodes;
}
unsigned long size(void)
{
if (anodes)
return nnodes->size() + anodes->size();
return nnodes->size();
}
};
/* Temporary state structure used when building differential encoding
* @parents - set of states that have transitions to this state
* @depth - level in the DAG
* @state - back reference to state this DAG entry belongs
* @rel - state that this state is relative to for differential encoding
*/
struct DiffDag {
Partition parents;
int depth;
State *state;
State *rel;
};
/*
* State - DFA individual state information
* label: a unique label to identify the state used for pretty printing
* the non-matching state is setup to have label == 0 and
* the start state is setup to have label == 1
* audit: the audit permission mask for the state
* accept: the accept permissions for the state
* trans: set of transitions from this state
* otherwise: the default state for transitions not in @trans
* partition: Is a temporary work variable used during dfa minimization.
* it can be replaced with a map, but that is slower and uses more
* memory.
* proto: Is a temporary work variable used during dfa creation. It can
* be replaced by using the nodemap, but that is slower
*/
class State {
public:
State(int l, ProtoState &n, State *other, bool filedfa):
label(l), flags(0), idx(0), perms(), trans()
{
int error;
if (other)
otherwise = other;
else
otherwise = this;
proto = n;
/* Compute permissions associated with the State. */
error = accept_perms(n.anodes, perms, filedfa);
if (error) {
//cerr << "Failing on accept perms " << error << "\n";
throw error;
}
};
State *next(transchar c) {
State *state = this;
do {
StateTrans::iterator i = state->trans.find(c);
if (i != state->trans.end())
return i->second;
if (!(state->flags & DiffEncodeFlag))
return state->otherwise;
state = state->otherwise;
} while (state);
/* never reached */
assert(0);
return NULL;
}
ostream &dump(ostream &os)
{
os << *this << "\n";
for (StateTrans::iterator i = trans.begin(); i != trans.end(); i++) {
os << " " << i->first.c << " -> " << *i->second << "\n";
}
return os;
}
int diff_weight(State *rel, int max_range, int upper_bound);
int make_relative(State *rel, int upper_bound);
void flatten_relative(State *, int upper_bound);
int apply_and_clear_deny(void) { return perms.apply_and_clear_deny(); }
void map_perms_to_accept(perm32_t &accept1, perm32_t &accept2,
perm32_t &accept3, bool prompt)
{
accept1 = perms.allow;
if (prompt && prompt_compat_mode == PROMPT_COMPAT_DEV)
accept2 = PACK_AUDIT_CTL(perms.prompt, perms.quiet);
else
accept2 = PACK_AUDIT_CTL(perms.audit, perms.quiet);
accept3 = perms.prompt;
}
int label;
int flags;
int idx;
perms_t perms;
StateTrans trans;
State *otherwise;
/* temp storage for State construction */
union {
Partition *partition; /* used during minimization */
ProtoState proto; /* used during creation */
DiffDag *diff; /* used during diff encoding */
};
};
class NodeMap: public CacheStats
{
public:
typedef map<ProtoState, State *>::iterator iterator;
iterator begin() { return cache.begin(); }
iterator end() { return cache.end(); }
map<ProtoState, State *> cache;
NodeMap(void): cache() { };
~NodeMap() { clear(); };
virtual unsigned long size(void) const { return cache.size(); }
void clear()
{
cache.clear();
CacheStats::clear();
}
pair<iterator,bool> insert(ProtoState &proto, State *state)
{
pair<iterator,bool> uniq;
uniq = cache.insert(make_pair(proto, state));
if (uniq.second == false) {
dup++;
} else {
sum += proto.size();
if (proto.size() > max)
max = proto.size();
}
return uniq;
}
};
typedef map<const State *, size_t> Renumber_Map;
/* Transitions in the DFA. */
class DFA {
void dump_node_to_dfa(void);
State *add_new_state(NodeSet *nodes, State *other);
State *add_new_state(NodeSet *anodes, NodeSet *nnodes, State *other);
void update_state_transitions(State *state);
void process_work_queue(const char *header, optflags const &);
void dump_diff_chain(ostream &os, map<State *, Partition> &relmap,
Partition &chain, State *state,
unsigned int &count, unsigned int &total,
unsigned int &max);
/* temporary values used during computations */
NodeVecCache anodes_cache;
NodeVecCache nnodes_cache;
NodeMap node_map;
list<State *> work_queue;
public:
DFA(Node *root, optflags const &flags, bool filedfa);
virtual ~DFA();
State *match_len(State *state, const char *str, size_t len);
State *match_until(State *state, const char *str, const char term);
State *match(const char *str);
void remove_unreachable(optflags const &flags);
bool same_mappings(State *s1, State *s2);
void minimize(optflags const &flags);
int apply_and_clear_deny(void);
void clear_priorities(void);
void diff_encode(optflags const &flags);
void undiff_encode(void);
void dump_diff_encode(ostream &os);
void dump(ostream &os, Renumber_Map *renum);
void dump_dot_graph(ostream &os);
void dump_uniq_perms(const char *s);
map<transchar, transchar> equivalence_classes(optflags const &flags);
void apply_equivalence_classes(map<transchar, transchar> &eq);
void compute_perms_table_ent(State *state, size_t pos,
vector <aa_perms> &perms_table,
bool prompt);
void compute_perms_table(vector <aa_perms> &perms_table,
bool prompt);
unsigned int diffcount;
int oob_range;
int max_range;
int ord_range;
int upper_bound;
Node *root;
State *nonmatching, *start;
Partition states;
bool filedfa;
};
void dump_equivalence_classes(ostream &os, map<transchar, transchar> &eq);
#endif /* __LIBAA_RE_HFA_H */