apparmor/parser/parser_interface.c
John Johansen d05313f555 Add the ability to separate policy_version from kernel and parser abi
This will allow for the parser to invalidate its caches separate of whether
the kernel policy version has changed. This can be desirable if a parser
bug is discovered, a new version the parser is shipped and we need to
force cache files to be regenerated.

Policy current stores a 32 bit version number in the header binary policy.
For newer policy (> v5 kernel abi) split this number into 3 separate
fields policy_version, parser_abi, kernel_abi.

If binary policy with a split version number is loaded to an older
kernel it will be correctly rejected as unsupported as those kernels
will see it as a none v5 version. For kernels that only support v5
policy on the kernel abi version is written.

The rules for policy versioning should be
policy_version:
  Set by text policy language version. Parsers that don't understand
  a specified version may fail, or drop rules they are unaware of.

parser_abi_version:
  gets bumped when a userspace bug is discovered that requires policy be
  recompiled. The policy version could be reset for each new kernel version
  but since the parser needs to support multiple kernel versions tracking
  this is extra work and should be avoided.

kernel_abi_version:
  gets bumped when semantic changes need to be applied. Eg unix domain
  sockets being mediated at connect.

  the kernel abi version does not encapsulate all supported features.
  As kernels could have different sets of patches supplied. Basic feature
  support is determined by the policy_mediates() encoding in the policydb.

  As such comparing cache features to kernel features is still needed
  to determine if cached policy is best matched to the kernel.

Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-by: Seth Arnold <seth.arnold@canonical.com>
2014-04-23 11:00:32 -07:00

904 lines
20 KiB
C

/*
* Copyright (c) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
* NOVELL (All rights reserved)
*
* Copyright (c) 2013
* Canonical Ltd. (All rights reserved)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, contact Novell, Inc.
*/
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <libintl.h>
#define _(s) gettext(s)
#include "parser.h"
#include "profile.h"
#include "libapparmor_re/apparmor_re.h"
#include <unistd.h>
#include <linux/unistd.h>
/* only for x86 at the moment */
#include <endian.h>
#include <byteswap.h>
#include <libintl.h>
#define _(s) gettext(s)
#define BUFFERINC 65536
//#define BUFFERINC 16
#define SD_CODE_SIZE (sizeof(u8))
#define SD_STR_LEN (sizeof(u16))
int __sd_serialize_profile(int option, Profile *prof);
static void print_error(int error)
{
switch (error) {
case -ESPIPE:
PERROR(_("Bad write position\n"));
break;
case -EPERM:
PERROR(_("Permission denied\n"));
break;
case -ENOMEM:
PERROR(_("Out of memory\n"));
break;
case -EFAULT:
PERROR(_("Couldn't copy profile: Bad memory address\n"));
break;
case -EPROTO:
PERROR(_("Profile doesn't conform to protocol\n"));
break;
case -EBADMSG:
PERROR(_("Profile does not match signature\n"));
break;
case -EPROTONOSUPPORT:
PERROR(_("Profile version not supported by Apparmor module\n"));
break;
case -EEXIST:
PERROR(_("Profile already exists\n"));
break;
case -ENOENT:
PERROR(_("Profile doesn't exist\n"));
break;
case -EACCES:
PERROR(_("Permission denied; attempted to load a profile while confined?\n"));
break;
default:
PERROR(_("Unknown error (%d): %s\n"), -error, strerror(-error));
break;
}
}
int load_profile(int option, Profile *prof)
{
int retval = 0;
int error = 0;
PDEBUG("Serializing policy for %s.\n", prof->name);
retval = __sd_serialize_profile(option, prof);
if (retval < 0) {
error = retval; /* yeah, we'll just report the last error */
switch (option) {
case OPTION_ADD:
PERROR(_("%s: Unable to add \"%s\". "),
progname, prof->name);
print_error(error);
break;
case OPTION_REPLACE:
PERROR(_("%s: Unable to replace \"%s\". "),
progname, prof->name);
print_error(error);
break;
case OPTION_REMOVE:
PERROR(_("%s: Unable to remove \"%s\". "),
progname, prof->name);
print_error(error);
break;
case OPTION_STDOUT:
PERROR(_("%s: Unable to write to stdout\n"),
progname);
break;
case OPTION_OFILE:
PERROR(_("%s: Unable to write to output file\n"),
progname);
default:
PERROR(_("%s: ASSERT: Invalid option: %d\n"),
progname, option);
exit(1);
break;
}
} else if (conf_verbose) {
switch (option) {
case OPTION_ADD:
printf(_("Addition succeeded for \"%s\".\n"),
prof->name);
break;
case OPTION_REPLACE:
printf(_("Replacement succeeded for \"%s\".\n"),
prof->name);
break;
case OPTION_REMOVE:
printf(_("Removal succeeded for \"%s\".\n"),
prof->name);
break;
case OPTION_STDOUT:
case OPTION_OFILE:
break;
default:
PERROR(_("%s: ASSERT: Invalid option: %d\n"),
progname, option);
exit(1);
break;
}
}
return error;
}
enum sd_code {
SD_U8,
SD_U16,
SD_U32,
SD_U64,
SD_NAME, /* same as string except it is items name */
SD_STRING,
SD_BLOB,
SD_STRUCT,
SD_STRUCTEND,
SD_LIST,
SD_LISTEND,
SD_ARRAY,
SD_ARRAYEND,
SD_OFFSET
};
const char *sd_code_names[] = {
"SD_U8",
"SD_U16",
"SD_U32",
"SD_U64",
"SD_NAME",
"SD_STRING",
"SD_BLOB",
"SD_STRUCT",
"SD_STRUCTEND",
"SD_LIST",
"SD_LISTEND",
"SD_ARRAY",
"SD_ARRAYEND",
"SD_OFFSET"
};
/* Currently we will just use a contiguous block of memory
be we are going to just hide this for the moment. */
struct __sdserialize {
u8 *buffer;
u8 *pos;
u8 *extent;
};
sd_serialize *alloc_sd_serial(void)
{
sd_serialize *p = (sd_serialize *) calloc(1, sizeof(sd_serialize));
if (!p)
return NULL;
p->buffer = (u8 *) malloc(BUFFERINC);
if (!p->buffer) {
free(p);
return NULL;
}
p->pos = p->buffer;
p->extent = p->buffer + BUFFERINC;
return p;
}
void free_sd_serial(sd_serialize *p)
{
if (p) {
if (p->buffer)
free(p->buffer);
free(p);
}
}
/*check if something of size length is in sd_serial bounds */
static inline int sd_inbounds(sd_serialize *p, int size)
{
return (p->pos + size <= p->extent);
}
static inline void sd_inc(sd_serialize *p, int size)
{
if (sd_inbounds(p, size)) {
p->pos += size;
} else {
PERROR(_("PANIC bad increment buffer %p pos %p ext %p size %d res %p\n"),
p->buffer, p->pos, p->extent, size, p->pos + size);
exit(-1);
}
}
inline long sd_serial_size(sd_serialize *p)
{
return (long) (p->pos) - (long) (p->buffer);
}
/* routines for writing data to the serialization buffer */
inline int sd_prepare_write(sd_serialize *p, enum sd_code code, size_t size)
{
int num = (size / BUFFERINC) + 1;
if (p->pos + SD_CODE_SIZE + size > p->extent) {
long pos;
/* try and reallocate the buffer */
u8 *buffer = (u8 *) malloc((long)(p->extent) - (long)(p->buffer) + (BUFFERINC * num));
memcpy(buffer, p->buffer, (long)(p->extent) - (long)(p->buffer));
pos = (long)(p->pos) - (long)(p->buffer);
if (buffer == NULL || errno == ENOMEM)
return 0;
p->extent = buffer + ((long)(p->extent) - (long)(p->buffer)) + (BUFFERINC * num);
free(p->buffer);
p->buffer = buffer;
p->pos = buffer + pos;
}
*(u8 *) (p->pos) = code;
sd_inc(p, SD_CODE_SIZE);
return 1;
}
inline int sd_write8(sd_serialize *p, u8 b)
{
u8 *c;
if (!sd_prepare_write(p, SD_U8, sizeof(b)))
return 0;
c = (u8 *) p->pos;
*c = b;
sd_inc(p, 1);
return 1;
}
inline int sd_write16(sd_serialize *p, u16 b)
{
u16 tmp;
if (!sd_prepare_write(p, SD_U16, sizeof(b)))
return 0;
tmp = cpu_to_le16(b);
memcpy(p->pos, &tmp, sizeof(tmp));
sd_inc(p, sizeof(tmp));
return 1;
}
inline int sd_write32(sd_serialize *p, u32 b)
{
u32 tmp;
if (!sd_prepare_write(p, SD_U32, sizeof(b)))
return 0;
tmp = cpu_to_le32(b);
memcpy(p->pos, &tmp, sizeof(tmp));
sd_inc(p, sizeof(tmp));
return 1;
}
inline int sd_write64(sd_serialize *p, u64 b)
{
u64 tmp;
if (!sd_prepare_write(p, SD_U64, sizeof(b)))
return 0;
tmp = cpu_to_le64(b);
memcpy(p->pos, &tmp, sizeof(tmp));
sd_inc(p, sizeof(tmp));
return 1;
}
inline int sd_write_name(sd_serialize *p, const char *name)
{
long size = 0;
PDEBUG("Writing name '%s'\n", name);
if (name) {
u16 tmp;
size = strlen(name) + 1;
if (!sd_prepare_write(p, SD_NAME, SD_STR_LEN + size))
return 0;
tmp = cpu_to_le16(size);
memcpy(p->pos, &tmp, sizeof(tmp));
sd_inc(p, sizeof(tmp));
memcpy(p->pos, name, size);
sd_inc(p, size);
}
return 1;
}
inline int sd_write_blob(sd_serialize *p, void *b, int buf_size, char *name)
{
u32 tmp;
if (!sd_write_name(p, name))
return 0;
if (!sd_prepare_write(p, SD_BLOB, 4 + buf_size))
return 0;
tmp = cpu_to_le32(buf_size);
memcpy(p->pos, &tmp, sizeof(tmp));
sd_inc(p, sizeof(tmp));
memcpy(p->pos, b, buf_size);
sd_inc(p, buf_size);
return 1;
}
#define align64(X) (((X) + (typeof(X)) 7) & ~((typeof(X)) 7))
inline int sd_write_aligned_blob(sd_serialize *p, void *b, int buf_size,
const char *name)
{
size_t pad;
u32 tmp;
if (!sd_write_name(p, name))
return 0;
pad = align64(p->pos + 5 - p->buffer) - (p->pos + 5 - p->buffer);
if (!sd_prepare_write(p, SD_BLOB, 4 + buf_size + pad))
return 0;
tmp = cpu_to_le32(buf_size + pad);
memcpy(p->pos, &tmp, sizeof(tmp));
sd_inc(p, sizeof(tmp));
memset(p->pos, 0, pad);
sd_inc(p, pad);
memcpy(p->pos, b, buf_size);
sd_inc(p, buf_size);
return 1;
}
static int sd_write_strn(sd_serialize *p, char *b, int size, const char *name)
{
u16 tmp;
if (!sd_write_name(p, name))
return 0;
if (!sd_prepare_write(p, SD_STRING, SD_STR_LEN + size))
return 0;
tmp = cpu_to_le16(size);
memcpy(p->pos, &tmp, sizeof(tmp));
sd_inc(p, sizeof(tmp));
memcpy(p->pos, b, size);
sd_inc(p, size);
return 1;
}
inline int sd_write_string(sd_serialize *p, char *b, const char *name)
{
return sd_write_strn(p, b, strlen(b) + 1, name);
}
inline int sd_write_struct(sd_serialize *p, const char *name)
{
if (!sd_write_name(p, name))
return 0;
if (!sd_prepare_write(p, SD_STRUCT, 0))
return 0;
return 1;
}
inline int sd_write_structend(sd_serialize *p)
{
if (!sd_prepare_write(p, SD_STRUCTEND, 0))
return 0;
return 1;
}
inline int sd_write_array(sd_serialize *p, const char *name, int size)
{
u16 tmp;
if (!sd_write_name(p, name))
return 0;
if (!sd_prepare_write(p, SD_ARRAY, 2))
return 0;
tmp = cpu_to_le16(size);
memcpy(p->pos, &tmp, sizeof(tmp));
sd_inc(p, sizeof(tmp));
return 1;
}
inline int sd_write_arrayend(sd_serialize *p)
{
if (!sd_prepare_write(p, SD_ARRAYEND, 0))
return 0;
return 1;
}
inline int sd_write_list(sd_serialize *p, const char *name)
{
if (!sd_write_name(p, name))
return 0;
if (!sd_prepare_write(p, SD_LIST, 0))
return 0;
return 1;
}
inline int sd_write_listend(sd_serialize *p)
{
if (!sd_prepare_write(p, SD_LISTEND, 0))
return 0;
return 1;
}
int sd_serialize_dfa(sd_serialize *p, void *dfa, size_t size)
{
if (dfa && !sd_write_aligned_blob(p, dfa, size, "aadfa"))
return 0;
return 1;
}
int sd_serialize_rlimits(sd_serialize *p, struct aa_rlimits *limits)
{
int i;
if (!limits->specified)
return 1;
if (!sd_write_struct(p, "rlimits"))
return 0;
if (!sd_write32(p, limits->specified))
return 0;
if (!sd_write_array(p, NULL, RLIM_NLIMITS))
return 0;
for (i = 0; i < RLIM_NLIMITS; i++) {
if (!sd_write64(p, limits->limits[i]))
return 0;
}
if (!sd_write_arrayend(p))
return 0;
if (!sd_write_structend(p))
return 0;
return 1;
}
int sd_serialize_xtable(sd_serialize *p, char **table)
{
int count, i;
if (!table[4])
return 1;
if (!sd_write_struct(p, "xtable"))
return 0;
count = 0;
for (i = 4; i < AA_EXEC_COUNT; i++) {
if (table[i])
count++;
}
if (!sd_write_array(p, NULL, count))
return 0;
for (i = 4; i < count + 4; i++) {
int len = strlen(table[i]) + 1;
/* if its a namespace make sure the second : is overwritten
* with 0, so that the namespace and name are \0 seperated
*/
if (*table[i] == ':') {
char *tmp = table[i] + 1;
strsep(&tmp, ":");
}
if (!sd_write_strn(p, table[i], len, NULL))
return 0;
}
if (!sd_write_arrayend(p))
return 0;
if (!sd_write_structend(p))
return 0;
return 1;
}
int count_file_ents(struct cod_entry *list)
{
struct cod_entry *entry;
int count = 0;
list_for_each(list, entry) {
if (entry->pattern_type == ePatternBasic) {
count++;
}
}
return count;
}
int count_tailglob_ents(struct cod_entry *list)
{
struct cod_entry *entry;
int count = 0;
list_for_each(list, entry) {
if (entry->pattern_type == ePatternTailGlob) {
count++;
}
}
return count;
}
int sd_serialize_profile(sd_serialize *p, Profile *profile,
int flattened)
{
uint64_t allowed_caps;
if (!sd_write_struct(p, "profile"))
return 0;
if (flattened) {
assert(profile->parent);
int res;
char *name = (char *) malloc(3 + strlen(profile->name) +
strlen(profile->parent->name));
if (!name)
return 0;
sprintf(name, "%s//%s", profile->parent->name, profile->name);
res = sd_write_string(p, name, NULL);
free(name);
if (!res)
return 0;
} else {
if (!sd_write_string(p, profile->name, NULL))
return 0;
}
/* only emit this if current kernel at least supports "create" */
if (perms_create) {
if (profile->xmatch) {
if (!sd_serialize_dfa(p, profile->xmatch, profile->xmatch_size))
return 0;
if (!sd_write32(p, profile->xmatch_len))
return 0;
}
}
if (!sd_write_struct(p, "flags"))
return 0;
/* used to be flags.debug, but that's no longer supported */
if (!sd_write32(p, profile->flags.hat))
return 0;
if (!sd_write32(p, profile->flags.complain))
return 0;
if (!sd_write32(p, profile->flags.audit))
return 0;
if (!sd_write_structend(p))
return 0;
if (profile->flags.path) {
int flags = 0;
if (profile->flags.path & PATH_CHROOT_REL)
flags |= 0x8;
if (profile->flags.path & PATH_MEDIATE_DELETED)
flags |= 0x10000;
if (profile->flags.path & PATH_ATTACH)
flags |= 0x4;
if (profile->flags.path & PATH_CHROOT_NSATTACH)
flags |= 0x10;
if (!sd_write_name(p, "path_flags") ||
!sd_write32(p, flags))
return 0;
}
#define low_caps(X) ((u32) ((X) & 0xffffffff))
#define high_caps(X) ((u32) (((X) >> 32) & 0xffffffff))
allowed_caps = (profile->caps.allow) & ~profile->caps.deny;
if (!sd_write32(p, low_caps(allowed_caps)))
return 0;
if (!sd_write32(p, low_caps(allowed_caps & profile->caps.audit)))
return 0;
if (!sd_write32(p, low_caps(profile->caps.deny & profile->caps.quiet)))
return 0;
if (!sd_write32(p, 0))
return 0;
if (!sd_write_struct(p, "caps64"))
return 0;
if (!sd_write32(p, high_caps(allowed_caps)))
return 0;
if (!sd_write32(p, high_caps(allowed_caps & profile->caps.audit)))
return 0;
if (!sd_write32(p, high_caps(profile->caps.deny & profile->caps.quiet)))
return 0;
if (!sd_write32(p, 0))
return 0;
if (!sd_write_structend(p))
return 0;
if (!sd_serialize_rlimits(p, &profile->rlimits))
return 0;
if (profile->net.allow && kernel_supports_network) {
size_t i;
if (!sd_write_array(p, "net_allowed_af", get_af_max()))
return 0;
for (i = 0; i < get_af_max(); i++) {
u16 allowed = profile->net.allow[i] &
~profile->net.deny[i];
if (!sd_write16(p, allowed))
return 0;
if (!sd_write16(p, allowed & profile->net.audit[i]))
return 0;
if (!sd_write16(p, profile->net.deny[i] & profile->net.quiet[i]))
return 0;
}
if (!sd_write_arrayend(p))
return 0;
} else if (profile->net.allow)
pwarn(_("profile %s network rules not enforced\n"), profile->name);
if (profile->policy.dfa) {
if (!sd_write_struct(p, "policydb"))
return 0;
if (!sd_serialize_dfa(p, profile->policy.dfa, profile->policy.size))
return 0;
if (!sd_write_structend(p))
return 0;
}
/* either have a single dfa or lists of different entry types */
if (!sd_serialize_dfa(p, profile->dfa.dfa, profile->dfa.size))
return 0;
if (!sd_serialize_xtable(p, profile->exec_table))
return 0;
if (!sd_write_structend(p))
return 0;
return 1;
}
int sd_serialize_top_profile(sd_serialize *p, Profile *profile)
{
uint32_t version;
version = ENCODE_VERSION(force_complain, policy_version,
parser_abi_version, kernel_abi_version);
if (!sd_write_name(p, "version"))
return 0;
if (!sd_write32(p, version))
return 0;
if (profile_ns) {
if (!sd_write_string(p, profile_ns, "namespace"))
return 0;
} else if (profile->ns) {
if (!sd_write_string(p, profile->ns, "namespace"))
return 0;
}
return sd_serialize_profile(p, profile, profile->parent ? 1 : 0);
}
int cache_fd = -1;
int __sd_serialize_profile(int option, Profile *prof)
{
int fd = -1;
int error = -ENOMEM, size, wsize;
sd_serialize *work_area;
char *filename = NULL;
switch (option) {
case OPTION_ADD:
if (asprintf(&filename, "%s/.load", subdomainbase) == -1)
goto exit;
if (kernel_load) fd = open(filename, O_WRONLY);
break;
case OPTION_REPLACE:
if (asprintf(&filename, "%s/.replace", subdomainbase) == -1)
goto exit;
if (kernel_load) fd = open(filename, O_WRONLY);
break;
case OPTION_REMOVE:
if (asprintf(&filename, "%s/.remove", subdomainbase) == -1)
goto exit;
if (kernel_load) fd = open(filename, O_WRONLY);
break;
case OPTION_STDOUT:
filename = strdup("stdout");
fd = dup(1);
break;
case OPTION_OFILE:
fd = dup(fileno(ofile));
break;
default:
error = -EINVAL;
goto exit;
break;
}
if (fd < 0 && (kernel_load || option == OPTION_OFILE || option == OPTION_STDOUT)) {
PERROR(_("Unable to open %s - %s\n"), filename,
strerror(errno));
error = -errno;
goto exit;
}
error = 0;
free(filename);
if (option == OPTION_REMOVE) {
char *name, *ns = NULL;
int len = 0;
if (profile_ns) {
len += strlen(profile_ns) + 2;
ns = profile_ns;
} else if (prof->ns) {
len += strlen(prof->ns) + 2;
ns = prof->ns;
}
if (prof->parent) {
name = (char *) malloc(strlen(prof->name) + 3 +
strlen(prof->parent->name) + len);
if (!name) {
PERROR(_("Memory Allocation Error: Unable to remove ^%s\n"), prof->name);
error = -errno;
goto exit;
}
if (ns)
sprintf(name, ":%s:%s//%s", ns,
prof->parent->name, prof->name);
else
sprintf(name, "%s//%s", prof->parent->name,
prof->name);
} else if (ns) {
name = (char *) malloc(len + strlen(prof->name) + 1);
if (!name) {
PERROR(_("Memory Allocation Error: Unable to remove %s:%s."), ns, prof->name);
error = -errno;
goto exit;
}
sprintf(name, ":%s:%s", ns, prof->name);
} else {
name = prof->name;
}
size = strlen(name) + 1;
if (kernel_load) {
wsize = write(fd, name, size);
if (wsize < 0)
error = -errno;
}
if (prof->parent || ns)
free(name);
} else {
work_area = alloc_sd_serial();
if (!work_area) {
close(fd);
PERROR(_("unable to create work area\n"));
error = -ENOMEM;
goto exit;
}
if (!sd_serialize_top_profile(work_area, prof)) {
close(fd);
free_sd_serial(work_area);
PERROR(_("unable to serialize profile %s\n"),
prof->name);
goto exit;
}
size = (long) (work_area->pos) - (long)(work_area->buffer);
if (kernel_load || option == OPTION_STDOUT || option == OPTION_OFILE) {
wsize = write(fd, work_area->buffer, size);
if (wsize < 0) {
error = -errno;
} else if (wsize < size) {
PERROR(_("%s: Unable to write entire profile entry\n"),
progname);
error = -EIO;
}
}
if (cache_fd != -1) {
wsize = write(cache_fd, work_area->buffer, size);
if (wsize < 0) {
error = -errno;
} else if (wsize < size) {
PERROR(_("%s: Unable to write entire profile entry to cache\n"),
progname);
error = -EIO;
}
}
free_sd_serial(work_area);
}
close(fd);
if (!prof->hat_table.empty() && option != OPTION_REMOVE) {
if (load_flattened_hats(prof, option) == 0)
return 0;
}
exit:
return error;
}
/* bleah the kernel should just loop and do multiple load, but to support
* older systems we need to do this
*/
#define PROFILE_HEADER_SIZE
static char header_version[] = "\x04\x08\x00version";
static char *next_profile_buffer(char *buffer, int size)
{
char *b = buffer;
for (; size - sizeof(header_version); b++, size--) {
if (memcmp(b, header_version, sizeof(header_version)) == 0) {
return b;
}
}
return NULL;
}
int sd_load_buffer(int option, char *buffer, int size)
{
int fd = -1;
int error = -ENOMEM, wsize, bsize;
char *filename = NULL;
char *b;
switch (option) {
case OPTION_ADD:
if (asprintf(&filename, "%s/.load", subdomainbase) == -1)
goto exit;
if (kernel_load) fd = open(filename, O_WRONLY);
break;
case OPTION_REPLACE:
if (asprintf(&filename, "%s/.replace", subdomainbase) == -1)
goto exit;
if (kernel_load) fd = open(filename, O_WRONLY);
break;
default:
error = -EINVAL;
goto exit;
break;
}
if (kernel_load && fd < 0) {
PERROR(_("Unable to open %s - %s\n"), filename,
strerror(errno));
error = -errno;
goto exit;
}
error = 0;
for (b = buffer; b ; b = next_profile_buffer(b + sizeof(header_version), bsize)) {
bsize = size - (b - buffer);
if (kernel_load) {
wsize = write(fd, b, bsize);
if (wsize < 0) {
error = -errno;
} else if (wsize < bsize) {
PERROR(_("%s: Unable to write entire profile entry\n"),
progname);
}
}
}
if (kernel_load) close(fd);
exit:
free(filename);
return error;
}