procmon/cache improvements

- Fixed several leaks.
 - Cache of events reorganized and improved.
   * items are added faster.
   * proc details are rebuilt if needed (checksums, proc tree, etc)
   * proc's tree is reused if we've got the parent in cache.

rel: #413
This commit is contained in:
Gustavo Iñiguez Goia 2023-12-12 14:48:17 +01:00
parent 9efaa37098
commit 431e2d3ed9
Failed to generate hash of commit
9 changed files with 290 additions and 206 deletions

View file

@ -33,10 +33,9 @@ func MonitorProcEvents(stop <-chan struct{}) {
proc := NewProcessWithParent(int(ev.PID), int(ev.TGID), "")
log.Debug("[procmon exec event] %d, pid:%d tgid:%d %s, %s -> %s\n", ev.TimeStamp, ev.PID, ev.TGID, proc.Comm, proc.Path, proc.Parent.Path)
if _, needsUpdate, found := EventsCache.IsInStore(int(ev.PID), proc); found {
if item, needsUpdate, found := EventsCache.IsInStore(int(ev.PID), proc); found {
if needsUpdate {
EventsCache.ComputeChecksums(proc)
EventsCache.UpdateItem(proc)
EventsCache.Update(&item.Proc, proc)
}
log.Debug("[procmon exec event inCache] %d, pid:%d tgid:%d\n", ev.TimeStamp, ev.PID, ev.TGID)
continue

View file

@ -11,13 +11,11 @@ var (
// EventsCache is the cache of processes
EventsCache *EventsStore
eventsCacheTicker *time.Ticker
// When we receive an Exit event, we'll delete it from cache.
// This TTL defines how much time we retain a PID on cache, before we receive
// an Exit event.
pidTTL = 3600 // seconds
// the 2nd cache of items is by path.
//
pathTTL = 3600 * 24 // 1 day
pidTTL = 20 // seconds
)
func init() {
@ -37,8 +35,8 @@ type ProcessEvent struct {
// ExecEventItem represents an item of the cache
type ExecEventItem struct {
sync.RWMutex
Proc *Process
//sync.RWMutex
Proc Process
LastSeen int64
TTL int32
}
@ -52,9 +50,7 @@ func (e *ExecEventItem) isValid() bool {
//EventsStore is the cache of exec events
type EventsStore struct {
eventByPID map[int]*ExecEventItem
// a path will have multiple pids, hashes will be computed only once by path
eventByPath map[string]*ExecEventItem
eventByPID map[int]ExecEventItem
checksums map[string]uint
mu *sync.RWMutex
checksumsEnabled bool
@ -70,8 +66,7 @@ func NewEventsStore() *EventsStore {
return &EventsStore{
mu: &sync.RWMutex{},
checksums: make(map[string]uint, 500),
eventByPID: make(map[int]*ExecEventItem, 500),
eventByPath: make(map[string]*ExecEventItem, 500),
eventByPID: make(map[int]ExecEventItem, 500),
}
}
@ -80,82 +75,161 @@ func NewEventsStore() *EventsStore {
// or reused existing ones otherwise.
func (e *EventsStore) Add(proc *Process) {
log.Debug("[cache] EventsStore.Add() %d, %s", proc.ID, proc.Path)
// add the item to cache ASAP
// Add the item to cache ASAP,
// then calculate the checksums if needed.
e.UpdateItem(proc)
if e.GetComputeChecksums() {
e.ComputeChecksums(proc)
if e.ComputeChecksums(proc) {
e.UpdateItem(proc)
}
}
log.Debug("[cache] EventsStore.Add() finished")
}
// UpdateItem updates a cache item
func (e *EventsStore) UpdateItem(proc *Process) {
log.Debug("[cache] updateItem() adding to events store (total: %d), pid: %d, paths: %s", e.Len(), proc.ID, proc.Path)
log.Debug("[cache] updateItem() updating events store (total: %d), pid: %d, path: %s", e.Len(), proc.ID, proc.Path)
if proc.Path == "" {
return
}
e.mu.Lock()
ev := &ExecEventItem{
Proc: proc,
ev := ExecEventItem{
Proc: *proc,
LastSeen: time.Now().UnixNano(),
}
e.eventByPID[proc.ID] = ev
e.eventByPath[proc.Path] = ev
e.mu.Unlock()
}
// IsInStore checks if a PID is in the store.
// If the PID is in cache, we may need to update it if the PID
// is reusing the PID of the parent.
func (e *EventsStore) IsInStore(key int, proc *Process) (item *ExecEventItem, needsUpdate bool, found bool) {
item, found = e.IsInStoreByPID(key)
if !found {
// ReplaceItem replaces an existing process with a new one.
func (e *EventsStore) ReplaceItem(oldProc, newProc *Process) {
log.Debug("[event inCache, replacement] new: %d, %s -> inCache: %d -> %s", newProc.ID, newProc.Path, oldProc.ID, oldProc.Path)
// Note: in rare occasions, the process being replaced is the older one.
// if oldProc.Starttime > newProc.Starttime {}
//
newProc.PPID = oldProc.ID
e.UpdateItem(newProc)
if newProc.ChecksumsCount() == 0 {
e.ComputeChecksums(newProc)
e.UpdateItem(newProc)
}
if len(oldProc.Tree) == 0 {
oldProc.GetParent()
oldProc.BuildTree()
e.UpdateItem(newProc)
}
// TODO: work on improving the process tree (specially with forks/clones*)
if len(newProc.Tree) == 0 {
newProc.Parent = oldProc
newProc.BuildTree()
e.UpdateItem(newProc)
}
}
// Update ...
func (e *EventsStore) Update(oldProc, proc *Process) {
log.Debug("[cache Update old] %d in cache -> %s", oldProc.ID, oldProc.Path)
update := false
updateOld := false
// forked process. Update cache.
// execEvent -> pid: 12345, /usr/bin/exec-wrapper
// execEvent -> pid: 12345, /usr/bin/telnet
if proc != nil && (proc.ID == oldProc.ID && proc.Path != oldProc.Path) {
e.ReplaceItem(oldProc, proc)
return
}
log.Debug("[cache] Event found by PID: %d, %s", key, item.Proc.Path)
if len(oldProc.Tree) == 0 {
oldProc.GetParent()
oldProc.BuildTree()
updateOld = true
}
if proc != nil && (len(oldProc.Tree) > 0 && len(proc.Tree) == 0 && oldProc.ID == proc.ID) {
proc.Tree = oldProc.Tree
update = true
}
if updateOld {
log.Debug("[cache] Update end, updating oldProc: %d, %s, %v", oldProc.ID, oldProc.Path, oldProc.Tree)
e.UpdateItem(oldProc)
}
if update {
log.Debug("[cache] Update end, updating newProc: %d, %s, %v", proc.ID, proc.Path, proc.Tree)
e.UpdateItem(proc)
}
}
func (e *EventsStore) needsUpdate(cachedProc, proc *Process) bool {
cachedProc.RLock()
defer cachedProc.RUnlock()
// check if this PID has replaced the PPID:
// systemd, pid:1234 -> curl, pid:1234 -> curl (i.e.: pid 1234) opens x.x.x.x:443
// Without this, we would display for example "systemd is connecting to x.x.x.x:443",
// instead of "curl is connecting to ..."
// The previous pid+path will still exist as parent of the new child, in proc.Parent
if proc != nil && proc.Path != "" && item.Proc.Path != proc.Path {
log.Debug("[event inCache, replacement] new: %d, %s -> inCache: %d -> %s", proc.ID, proc.Path, item.Proc.ID, item.Proc.Path)
//e.UpdateItem(proc)
needsUpdate = true
if proc != nil && (proc.ID == cachedProc.ID && proc.Path != cachedProc.Path) {
return true
}
sumsCount := cachedProc.ChecksumsCount()
if proc != nil && sumsCount > 0 && cachedProc.IsAlive() {
return false
}
if cachedProc != nil && sumsCount == 0 {
return true
}
if proc != nil && len(proc.Tree) == 0 {
return true
}
if cachedProc != nil && len(cachedProc.Tree) == 0 {
return true
}
return false
}
// IsInStore checks if a PID is in the store.
// If the PID is in cache, we may need to update it if the PID
// is reusing the PID of the parent.
func (e *EventsStore) IsInStore(key int, proc *Process) (item ExecEventItem, needsUpdate, found bool) {
item, found = e.IsInStoreByPID(key)
if !found {
return
}
if found && e.needsUpdate(&item.Proc, proc) {
needsUpdate = true
return
}
log.Debug("[cache] Event found by PID: %d, %s", key, item.Proc.Path)
return
}
// IsInStoreByPID checks if a pid exists in cache.
func (e *EventsStore) IsInStoreByPID(key int) (item *ExecEventItem, found bool) {
e.mu.RLock()
item, found = e.eventByPID[key]
e.mu.RUnlock()
return
}
// IsInStoreByPath checks if a process exists in cache by path.
func (e *EventsStore) IsInStoreByPath(path string) (item *ExecEventItem, found bool) {
if path == "" || path == KernelConnection {
return
}
e.mu.RLock()
item, found = e.eventByPath[path]
e.mu.RUnlock()
if found {
log.Debug("[cache] event found by path: %s", path)
}
return
}
// Delete an item from cache
func (e *EventsStore) Delete(key int) {
func (e *EventsStore) IsInStoreByPID(key int) (item ExecEventItem, found bool) {
e.mu.Lock()
delete(e.eventByPID, key)
e.mu.Unlock()
defer e.mu.Unlock()
item, found = e.eventByPID[key]
if !found {
return
}
item.LastSeen = time.Now().UnixNano()
return
}
// Len returns the number of items in cache.
@ -165,90 +239,48 @@ func (e *EventsStore) Len() int {
return len(e.eventByPID)
}
// DeleteOldItems deletes items that have exceeded the TTL
// Delete schedules an item to be deleted from cache.
func (e *EventsStore) Delete(key int) {
e.mu.Lock()
defer e.mu.Unlock()
ev, found := e.eventByPID[key]
if !found {
return
}
if !ev.Proc.IsAlive() {
delete(e.eventByPID, key)
}
}
// DeleteOldItems deletes items that have exited and exceeded the TTL.
// Keeping them in cache for a short period of time sometimes helps to
// link some connections to processes.
// Alived processes are not deleted.
func (e *EventsStore) DeleteOldItems() {
e.mu.Lock()
defer e.mu.Unlock()
log.Debug("[cache] deleting old events, total byPID: %d, byPath: %d", len(e.eventByPID), len(e.eventByPath))
log.Debug("[cache] deleting old events, total byPID: %d", len(e.eventByPID))
for k, item := range e.eventByPID {
if item.Proc.IsAlive() == false {
log.Debug("[cache] deleting old PID: %d -> %s", k, item.Proc.Path)
if !item.isValid() && !item.Proc.IsAlive() {
delete(e.eventByPID, k)
}
}
for path, item := range e.eventByPath {
if item.Proc.IsAlive() == false {
log.Debug("[cache] deleting old path: %d -> %s", item.Proc.ID, item.Proc.Path)
delete(e.eventByPath, path)
}
}
}
// -------------------------------------------------------------------------
// TODO: Move to its own package.
// A hashing service than runs in background, and accepts paths to hash
// and returns the hashes for different algorithms (configurables)
// ComputeChecksums obtains the checksums of the process
func (e *EventsStore) ComputeChecksums(proc *Process) bool {
e.mu.RLock()
defer e.mu.RUnlock()
// ComputeChecksums decides if we need to compute the checksum of a process or not.
// We don't recalculate hashes during the life of the process.
func (e *EventsStore) ComputeChecksums(proc *Process) {
if !e.checksumsEnabled {
return
if !e.checksumsEnabled || proc != nil && proc.IsAlive() && proc.ChecksumsCount() > 0 {
log.Debug("[cache] ComputeChecksums, already hashed: %s -> %v", proc.Path, proc.Checksums)
return false
}
log.Debug("[cache] reuseChecksums %d, %s", proc.ID, proc.Path)
// XXX: why double check if the PID is in cache?
// reuseChecksums is called from Add(), and before calling Add() we check if
// the PID is in cache.
// The problem is that we don't intercept some events (fork, clone*, dup*),
// and because of this sometimes we don't receive the event of the parent.
item, _, found := e.IsInStore(proc.ID, proc)
if !found {
log.Debug("cache.reuseChecksums() %d not inCache, %s", proc.ID, proc.Path)
// if parent path and current path are equal, and the parent is alive, see if we have the hash of the parent path
if !proc.IsChild() {
proc.ComputeChecksums(e.checksums)
log.Debug("[cache] reuseChecksums() pid not in cache, not child of parent: %d, %s - %d - %v", proc.ID, proc.Path, proc.Starttime, proc.Checksums)
return
}
// parent path is nil or paths differ or parent is not alive
// compute new checksums
log.Debug("[cache] reuseChecksums() proc is child, proc: %d, %d, %s parent: %d, %d, %s", proc.Starttime, proc.ID, proc.Path, proc.Parent.Starttime, proc.Parent.ID, proc.Parent.Path)
pit, found := e.IsInStoreByPath(proc.Parent.Path)
if !found {
//log.Info("cache.reuseChecksums() cache.add() pid not found byPath: %d, %s, parent: %d, %s", proc.ID, proc.Path, proc.Parent.ID, proc.Parent.Path)
proc.ComputeChecksums(e.checksums)
return
}
// if the parent path is in cache reuse the checksums
log.Debug("[cache] reuseChecksums() inCache, found by parent path: %d:%s, parent alive: %v, %d:%s", pit.Proc.ID, pit.Proc.Path, proc.Parent.IsAlive(), proc.Parent.ID, proc.Parent.Path)
if len(pit.Proc.Checksums) == 0 {
proc.ComputeChecksums(e.checksums)
return
}
log.Debug("[cache] reuseCheckums() reusing checksums: %v", pit.Proc.Checksums)
proc.Checksums = pit.Proc.Checksums
return
}
// pid found in cache
// we should check other parameters to see if the pid is really the same process
// proc/<pid>/maps
item.Proc.RLock()
checksumsNum := len(item.Proc.Checksums)
item.Proc.RUnlock()
if checksumsNum > 0 && (item.Proc.IsAlive() && item.Proc.Path == proc.Path) {
log.Debug("[cache] reuseChecksums() cached PID alive, already hashed: %v, %s new: %s", item.Proc.Checksums, item.Proc.Path, proc.Path)
proc.Checksums = item.Proc.Checksums
return
}
log.Debug("[cache] reuseChecksums() PID found inCache, computing hashes: %s new: %s - hashes: |%v<>%v|", item.Proc.Path, proc.Path, item.Proc.Checksums, proc.Checksums)
proc.ComputeChecksums(e.checksums)
return true
}
// AddChecksumHash adds a new hash algorithm to compute checksums
@ -279,12 +311,12 @@ func (e *EventsStore) SetComputeChecksums(compute bool) {
if !compute {
for _, item := range e.eventByPID {
// XXX: reset saved checksums? or keep them in cache?
item.Proc.Checksums = make(map[string]string)
item.Proc.ResetChecksums()
}
return
}
for _, item := range e.eventByPID {
if len(item.Proc.Checksums) == 0 {
if item.Proc.ChecksumsCount() == 0 {
item.Proc.ComputeChecksums(e.checksums)
}
}

View file

@ -33,25 +33,15 @@ func (p *Process) GetParent() {
return
}
// ReadFile + parse = ~40us
data, err := ioutil.ReadFile(p.pathStat)
if err != nil {
return
}
var ppid int
var state string
// https://lore.kernel.org/lkml/tog7cb$105a$1@ciao.gmane.io/T/
parts := bytes.Split(data, []byte(")"))
data = parts[len(parts)-1]
_, err = fmt.Sscanf(string(data), "%s %d", &state, &ppid)
if err != nil || ppid == 0 {
p.ReadPPID()
if p.PPID == 0 {
return
}
// TODO: see how we can reuse this object and the ppid, to save some iterations.
// right now it opens the can of leaks.
p.mu.Lock()
p.Parent = NewProcessEmpty(ppid, "")
p.Parent = NewProcessEmpty(p.PPID, "")
p.mu.Unlock()
p.Parent.ReadPath()
@ -64,6 +54,12 @@ func (p *Process) BuildTree() {
if len(p.Tree) > 0 {
return
}
// Adding this process to the tree, not to loose track of it.
p.Tree = append(p.Tree,
&protocol.StringInt{
Key: p.Path, Value: uint32(p.ID),
},
)
for pp := p.Parent; pp != nil; pp = pp.Parent {
// add the parents in reverse order, so when we iterate over them with the rules
// the first item is the most direct parent of the process.
@ -116,6 +112,26 @@ func (p *Process) GetExtraInfo() error {
return nil
}
// ReadPPID obtains the pid of the parent process
func (p *Process) ReadPPID() {
// ReadFile + parse = ~40us
data, err := ioutil.ReadFile(p.pathStat)
if err != nil {
p.PPID = 0
return
}
var state string
// https://lore.kernel.org/lkml/tog7cb$105a$1@ciao.gmane.io/T/
parts := bytes.Split(data, []byte(")"))
data = parts[len(parts)-1]
_, err = fmt.Sscanf(string(data), "%s %d", &state, &p.PPID)
if err != nil || p.PPID == 0 {
p.PPID = 0
return
}
}
// ReadComm reads the comm name from ProcFS /proc/<pid>/comm
func (p *Process) ReadComm() error {
if p.Comm != "" {
@ -380,12 +396,33 @@ func (p *Process) IsAlive() bool {
// IsChild determines if this process is child of its parent
func (p *Process) IsChild() bool {
return p.Parent != nil && p.Parent.Path == p.Path && p.Parent.IsAlive() //&& proc.Starttime != proc.Parent.Starttime
return (p.Parent != nil && p.Parent.Path == p.Path && p.Parent.IsAlive()) ||
core.Exists(fmt.Sprint("/proc/", p.PPID, "/task/", p.ID))
}
// ChecksumsCount returns the number of checksums of this process.
func (p *Process) ChecksumsCount() int {
p.mu.RLock()
defer p.mu.RUnlock()
return len(p.Checksums)
}
// ResetChecksums initializes checksums
func (p *Process) ResetChecksums() {
p.mu.Lock()
p.Checksums = make(map[string]string)
p.mu.Unlock()
}
// ComputeChecksums calculates the checksums of a the process path to the binary.
// Users may want to use different hashing alogrithms.
func (p *Process) ComputeChecksums(hashes map[string]uint) {
if p.IsAlive() && len(p.Checksums) > 0 {
log.Debug("process.ComputeChecksums() already hashed: %d, path: %s, %v", p.ID, p.Path, p.Checksums)
return
}
for hash := range hashes {
p.ComputeChecksum(hash)
}
@ -425,8 +462,8 @@ func (p *Process) ComputeChecksum(algo string) {
}
i := uint8(0)
for i = 0; i < 2; i++ {
log.Debug("[hashing %s], path %d: %s", algo, i, paths[i])
for i = 0; i < 3; i++ {
log.Debug("[hashing %s], path %d: %s -> %s", algo, i, paths[i], p.Path)
start := time.Now()
h.Reset()
@ -441,9 +478,9 @@ func (p *Process) ComputeChecksum(algo string) {
log.Debug("[hashing] Unable to dump process memory: %s", err)
continue
}
p.Lock()
p.mu.Lock()
p.Checksums[algo] = hex.EncodeToString(h.Sum(code))
p.Unlock()
p.mu.Unlock()
log.Debug("[hashing] memory region hashed, elapsed: %v ,Hash: %s, %s\n", time.Since(start), p.Checksums[algo], paths[i])
code = nil
break
@ -454,9 +491,9 @@ func (p *Process) ComputeChecksum(algo string) {
log.Debug("[hashing %s] Error copying data: %s", algo, err)
continue
}
p.Lock()
p.mu.Lock()
p.Checksums[algo] = hex.EncodeToString(h.Sum(nil))
p.Unlock()
p.mu.Unlock()
log.Debug("[hashing] elapsed: %v ,Hash: %s, %s\n", time.Since(start), p.Checksums[algo], paths[i])
break
@ -536,10 +573,6 @@ func (p *Process) dumpFileImage(filePath string) ([]byte, error) {
mappings = nil
//fmt.Printf(">>> READ MEM, regions size: %d, elfCode: %d\n", size, len(elfCode))
//if fInfo, err := os.Stat(filePath); err == nil {
// fmt.Printf("\t>>> on disk: %d\n", fInfo.Size())
//}
if err != nil {
return nil, err
}

View file

@ -46,7 +46,7 @@ func (i *ebpfCacheItem) isValid() bool {
func NewEbpfCache() *ebpfCacheType {
ebpfCacheTicker = time.NewTicker(1 * time.Minute)
return &ebpfCacheType{
Items: make(map[interface{}]*ebpfCacheItem, 0),
Items: make(map[interface{}]*ebpfCacheItem, 500),
mu: &sync.RWMutex{},
}
}
@ -83,6 +83,17 @@ func (e *ebpfCacheType) update(key interface{}, item *ebpfCacheItem) {
e.Items[key] = item
}
func (e *ebpfCacheType) updateByPid(proc *procmon.Process) {
e.mu.Lock()
defer e.mu.Unlock()
for k, item := range e.Items {
if proc.ID == item.Proc.ID {
e.update(k, item)
}
}
}
func (e *ebpfCacheType) Len() int {
e.mu.RLock()
defer e.mu.RUnlock()

View file

@ -161,8 +161,10 @@ func streamEventsWorker(id int, chn chan []byte, lost chan uint64, kernelEvents
log.Debug("Lost ebpf events: %d", l)
case d := <-chn:
if err := binary.Read(bytes.NewBuffer(d), hostByteOrder, &event); err != nil {
log.Error("[eBPF events #%d] error: %s", id, err)
} else {
log.Debug("[eBPF events #%d] error: %s", id, err)
continue
}
switch event.Type {
case EV_TYPE_EXEC, EV_TYPE_EXECVEAT:
processExecEvent(&event)
@ -170,7 +172,7 @@ func streamEventsWorker(id int, chn chan []byte, lost chan uint64, kernelEvents
case EV_TYPE_SCHED_EXIT:
processExitEvent(&event)
}
}
}
}
@ -178,13 +180,46 @@ Exit:
log.Debug("perfMap goroutine exited #%d", id)
}
// processExecEvent parses an execEevent to Process, saves or reuses it to
// cache, and decides if it needs to be updated.
func processExecEvent(event *execEvent) {
proc := event2process(event)
if proc == nil {
return
}
log.Debug("[eBPF exec event] type: %d, ppid: %d, pid: %d, %s -> %s", event.Type, event.PPID, event.PID, proc.Path, proc.Args)
itemParent, pfound := procmon.EventsCache.IsInStoreByPID(proc.PPID)
if pfound {
proc.Parent = &itemParent.Proc
proc.Tree = itemParent.Proc.Tree
}
item, needsUpdate, found := procmon.EventsCache.IsInStore(int(event.PID), proc)
if !found {
procmon.EventsCache.Add(proc)
getProcDetails(event, proc)
procmon.EventsCache.UpdateItem(proc)
ebpfCache.updateByPid(proc)
return
}
if found && needsUpdate {
procmon.EventsCache.Update(&item.Proc, proc)
ebpfCache.updateByPid(&item.Proc)
}
// from now on use cached Process
log.Debug("[eBPF event inCache] -> %d, %s", event.PID, item.Proc.Path)
}
// event2process creates a new Process from execEvent
func event2process(event *execEvent) (proc *procmon.Process) {
proc = procmon.NewProcessEmpty(int(event.PID), byteArrayToString(event.Comm[:]))
proc.UID = int(event.UID)
// trust process path received from kernel
// NOTE: this is the absolute path executed, but no the real path to the binary.
// if it's executed from a chroot, the absolute path willa be /chroot/path/usr/bin/blabla
// if it's from a container, the absolute path will be /proc/<pid>/root/usr/bin/blabla
// if it's executed from a chroot, the absolute path will be /chroot/path/usr/bin/blabla
// if it's from a container, the real absolute path will be /proc/<pid>/root/usr/bin/blabla
path := byteArrayToString(event.Filename[:])
if path != "" {
proc.SetPath(path)
@ -193,6 +228,8 @@ func event2process(event *execEvent) (proc *procmon.Process) {
return nil
}
}
proc.ReadPPID()
if event.ArgsPartial == 0 {
for i := 0; i < int(event.ArgsCount); i++ {
proc.Args = append(proc.Args, byteArrayToString(event.Args[i][:]))
@ -201,45 +238,18 @@ func event2process(event *execEvent) (proc *procmon.Process) {
} else {
proc.ReadCmdline()
}
return
}
func getProcDetails(event *execEvent, proc *procmon.Process) {
proc.GetParent()
proc.BuildTree()
proc.ReadCwd()
proc.ReadEnv()
log.Debug("[eBPF exec event] ppid: %d, pid: %d, %s -> %s", event.PPID, event.PID, proc.Path, proc.Args)
return
}
func processExecEvent(event *execEvent) {
proc := event2process(event)
if proc == nil {
return
}
// TODO: store multiple executions with the same pid but different paths:
// forks, execves... execs from chroots, containers, etc.
if item, needsUpdate, found := procmon.EventsCache.IsInStore(int(event.PID), proc); found {
if needsUpdate {
// when a process is replaced in memory, it'll be found in cache by PID,
// but the new process's details will be empty
proc.Parent = item.Proc
procmon.EventsCache.ComputeChecksums(proc)
procmon.EventsCache.UpdateItem(proc)
}
log.Debug("[eBPF event inCache] -> %d, %v", event.PID, item.Proc.Checksums)
return
}
procmon.EventsCache.Add(proc)
}
func processExitEvent(event *execEvent) {
log.Debug("[eBPF exit event] pid: %d, ppid: %d", event.PID, event.PPID)
ev, _, found := procmon.EventsCache.IsInStore(int(event.PID), nil)
if !found {
return
}
log.Debug("[eBPF exit event inCache] pid: %d, tgid: %d", event.PID, event.PPID)
if ev.Proc.IsAlive() == false {
procmon.EventsCache.Delete(int(event.PID))
log.Debug("[ebpf exit event] deleting DEAD pid: %d", event.PID)
}
}

View file

@ -160,11 +160,9 @@ func findConnProcess(value *networkEventT, connKey string) (proc *procmon.Proces
// Use socket's UID. A process may have dropped privileges.
// This is the UID that we've always used.
if ev, _, found := procmon.EventsCache.IsInStore(int(value.Pid), nil); found {
ev.Lock()
if ev, found := procmon.EventsCache.IsInStoreByPID(int(value.Pid)); found {
ev.Proc.UID = int(value.UID)
ev.Unlock()
proc = ev.Proc
proc = &ev.Proc
log.Debug("[ebpf conn] not in cache, but in execEvents: %s, %d -> %s -> %s", connKey, proc.ID, proc.Path, proc.Args)
return
}

View file

@ -98,7 +98,7 @@ func FindProcess(pid int, interceptUnknown bool) *Process {
}
if ev, _, found := EventsCache.IsInStore(pid, nil); found {
return ev.Proc
return &ev.Proc
}
proc := NewProcessEmpty(pid, "")

View file

@ -123,6 +123,7 @@ func NewProcessEmpty(pid int, comm string) *Process {
mu: &sync.RWMutex{},
Starttime: time.Now().UnixNano(),
ID: pid,
PPID: 0,
Comm: comm,
Args: make([]string, 0),
Env: make(map[string]string),
@ -235,8 +236,8 @@ func SetMonitorMethod(newMonitorMethod string) {
// GetMonitorMethod configures a new method for parsing connections.
func GetMonitorMethod() string {
lock.Lock()
defer lock.Unlock()
lock.RLock()
defer lock.RUnlock()
return monitorMethod
}

View file

@ -63,7 +63,7 @@ func (c *Client) monitorProcessDetails(pid int, stream protocol.UI_Notifications
p := &procmon.Process{}
item, found := procmon.EventsCache.IsInStoreByPID(pid)
if found {
newProc := *item.Proc
newProc := item.Proc
p = &newProc
if len(p.Tree) == 0 {
p.GetParent()