mirror of
https://github.com/posborne/rust-pstree.git
synced 2024-12-26 06:56:07 +01:00
fe0ed22080
Signed-off-by: Paul Osborne <osbpau@gmail.com>
190 lines
6.5 KiB
Rust
190 lines
6.5 KiB
Rust
// A version of pstree targetting linux written in rust!
|
|
//
|
|
// This is based on the following exercise from the excellent
|
|
// book "The Linux Programming Interface" by Michael Kerridsk.
|
|
//
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// Write a program that draws a tree showing the hierarchical
|
|
// parent-child relationships of all processes on the system, going all
|
|
// the way back to init. For each process, the program should display
|
|
// the process ID and the command being executed. The output of the
|
|
// program should be similar to that produced by pstree(1), although it
|
|
// does need not to be as sophisticated. The parent of each process on
|
|
// the system can be found by inspecing the PPid: line of all of the
|
|
// /proc/PID/status files on the system. Be careful to handle the
|
|
// possibilty that a process's parent (and thus its /proc/PID directory)
|
|
// disappears during the scan of all /proc/PID directories.
|
|
|
|
// Implementation Notes
|
|
// --------------------
|
|
// The linux /proc filesystem is a virtual filesystem that provides information
|
|
// about processes running on a linux system among other things. The /proc
|
|
// filesystem contains a directory, /proc/<pid>, for each running process in
|
|
// the system.
|
|
//
|
|
// Each process directory has a status file with contents including a bunch
|
|
// of different items, notably the process name and its parent process id (ppid).
|
|
// And with that information, we can build the process tree.
|
|
|
|
#![feature(path_ext)]
|
|
|
|
use std::path::Path;
|
|
use std::fs;
|
|
use std::io::prelude::*;
|
|
use std::fs::File;
|
|
use std::collections::hash_map::Entry::{Occupied, Vacant};
|
|
use std::collections::HashMap;
|
|
|
|
#[derive(Clone,Debug)]
|
|
struct ProcessRecord {
|
|
name: String,
|
|
pid: i32,
|
|
ppid: i32,
|
|
}
|
|
|
|
#[derive(Clone,Debug)]
|
|
struct ProcessTreeNode {
|
|
record: ProcessRecord, // the node owns the associated record
|
|
children: Vec<ProcessTreeNode>, // nodes own their children
|
|
}
|
|
|
|
#[derive(Clone,Debug)]
|
|
struct ProcessTree {
|
|
root: ProcessTreeNode, // tree owns ref to root node
|
|
}
|
|
|
|
impl ProcessTreeNode {
|
|
// constructor
|
|
fn new(record : &ProcessRecord) -> ProcessTreeNode {
|
|
ProcessTreeNode { record: (*record).clone(), children: Vec::new() }
|
|
}
|
|
}
|
|
|
|
|
|
// Given a status file path, return a hashmap with the following form:
|
|
// pid -> ProcessRecord
|
|
fn get_process_record(status_path: &Path) -> Option<ProcessRecord> {
|
|
let mut pid : Option<i32> = None;
|
|
let mut ppid : Option<i32> = None;
|
|
let mut name : Option<String> = None;
|
|
|
|
let mut reader = std::io::BufReader::new(File::open(status_path).unwrap());
|
|
loop {
|
|
let mut linebuf = String::new();
|
|
match reader.read_line(&mut linebuf) {
|
|
Ok(_) => {
|
|
if linebuf.is_empty() {
|
|
break;
|
|
}
|
|
let parts : Vec<&str> = linebuf[..].splitn(2, ':').collect();
|
|
if parts.len() == 2 {
|
|
let key = parts[0].trim();
|
|
let value = parts[1].trim();
|
|
match key {
|
|
"Name" => name = Some(value.to_string()),
|
|
"Pid" => pid = value.parse().ok(),
|
|
"PPid" => ppid = value.parse().ok(),
|
|
_ => (),
|
|
}
|
|
}
|
|
},
|
|
Err(_) => break,
|
|
}
|
|
}
|
|
return if pid.is_some() && ppid.is_some() && name.is_some() {
|
|
Some(ProcessRecord { name: name.unwrap(), pid: pid.unwrap(), ppid: ppid.unwrap() })
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
|
|
// build a simple struct (ProcessRecord) for each process
|
|
fn get_process_records() -> Vec<ProcessRecord> {
|
|
let proc_directory = Path::new("/proc");
|
|
|
|
// find potential process directories under /proc
|
|
let proc_directory_contents = fs::read_dir(&proc_directory).unwrap();
|
|
proc_directory_contents.filter_map(|entry| {
|
|
let entry_path = entry.unwrap().path();
|
|
if entry_path.is_dir() {
|
|
let status_path = entry_path.join("status");
|
|
if status_path.exists() {
|
|
return get_process_record(&status_path)
|
|
}
|
|
}
|
|
None
|
|
}).collect()
|
|
}
|
|
|
|
fn populate_node_helper(node: &mut ProcessTreeNode, pid_map: &HashMap<i32, &ProcessRecord>, ppid_map: &HashMap<i32, Vec<i32>>) {
|
|
let pid = node.record.pid; // avoid binding node as immutable in closure
|
|
let child_nodes = &mut node.children;
|
|
match ppid_map.get(&pid) {
|
|
Some(children) => {
|
|
child_nodes.extend(children.iter().map(|child_pid| {
|
|
let record = pid_map[child_pid];
|
|
let mut child = ProcessTreeNode::new(record);
|
|
populate_node_helper(&mut child, pid_map, ppid_map);
|
|
child
|
|
}));
|
|
},
|
|
None => {},
|
|
}
|
|
}
|
|
|
|
fn populate_node(node : &mut ProcessTreeNode, records: &Vec<ProcessRecord>) {
|
|
// O(n): build a mapping of pids to vectors of children. That is, each
|
|
// key is a pid and its value is a vector of the whose parent pid is the key
|
|
let mut ppid_map : HashMap<i32, Vec<i32>> = HashMap::new();
|
|
let mut pid_map : HashMap<i32, &ProcessRecord> = HashMap::new();
|
|
for record in records.iter() {
|
|
// entry returns either a vacant or occupied entry. If vacant,
|
|
// we insert a new vector with this records pid. If occupied,
|
|
// we push this record's pid onto the vec
|
|
pid_map.insert(record.pid, record);
|
|
match ppid_map.entry(record.ppid) {
|
|
Vacant(entry) => { entry.insert(vec![record.pid]); },
|
|
Occupied(mut entry) => { entry.get_mut().push(record.pid); },
|
|
};
|
|
}
|
|
|
|
// With the data structures built, it is off to the races
|
|
populate_node_helper(node, &pid_map, &ppid_map);
|
|
}
|
|
|
|
fn build_process_tree() -> ProcessTree {
|
|
let records = get_process_records();
|
|
let mut tree = ProcessTree {
|
|
root : ProcessTreeNode::new(
|
|
&ProcessRecord {
|
|
name: "/".to_string(),
|
|
pid: 0,
|
|
ppid: -1
|
|
})
|
|
};
|
|
|
|
// recursively populate all nodes in the tree starting from root (pid 0)
|
|
{
|
|
let root = &mut tree.root;
|
|
populate_node(root, &records);
|
|
}
|
|
tree
|
|
}
|
|
|
|
fn print_node(node : &ProcessTreeNode, indent_level : i32) {
|
|
// print indentation
|
|
for _ in (0..indent_level) {
|
|
print!(" ");
|
|
}
|
|
println!("- {} #{}", node.record.name, node.record.pid);
|
|
for child in node.children.iter() {
|
|
print_node(child, indent_level + 1); // recurse
|
|
}
|
|
}
|
|
|
|
fn main() {
|
|
let ptree = build_process_tree();
|
|
print_node(&(ptree.root), 0)
|
|
}
|