remove copy-pasta PLY

This commit is contained in:
Gil Forsyth 2016-10-07 14:14:08 -04:00
parent 9e67c213d5
commit ee16178a6e
7 changed files with 0 additions and 5716 deletions

View file

@ -1,34 +0,0 @@
PLY (Python Lex-Yacc) Version 3.8
Copyright (C) 2001-2015,
David M. Beazley (Dabeaz LLC)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the David Beazley or Dabeaz LLC may be used to
endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
More information about PLY can be obtained on the PLY webpage at:
http://www.dabeaz.com/ply

View file

@ -1,5 +0,0 @@
# PLY package
# Author: David Beazley (dave@dabeaz.com)
__version__ = '3.8'
__all__ = ['lex','yacc']

View file

@ -1,908 +0,0 @@
# -----------------------------------------------------------------------------
# cpp.py
#
# Author: David Beazley (http://www.dabeaz.com)
# Copyright (C) 2007
# All rights reserved
#
# This module implements an ANSI-C style lexical preprocessor for PLY.
# -----------------------------------------------------------------------------
from __future__ import generators
# -----------------------------------------------------------------------------
# Default preprocessor lexer definitions. These tokens are enough to get
# a basic preprocessor working. Other modules may import these if they want
# -----------------------------------------------------------------------------
tokens = (
'CPP_ID','CPP_INTEGER', 'CPP_FLOAT', 'CPP_STRING', 'CPP_CHAR', 'CPP_WS', 'CPP_COMMENT1', 'CPP_COMMENT2', 'CPP_POUND','CPP_DPOUND'
)
literals = "+-*/%|&~^<>=!?()[]{}.,;:\\\'\""
# Whitespace
def t_CPP_WS(t):
r'\s+'
t.lexer.lineno += t.value.count("\n")
return t
t_CPP_POUND = r'\#'
t_CPP_DPOUND = r'\#\#'
# Identifier
t_CPP_ID = r'[A-Za-z_][\w_]*'
# Integer literal
def CPP_INTEGER(t):
r'(((((0x)|(0X))[0-9a-fA-F]+)|(\d+))([uU][lL]|[lL][uU]|[uU]|[lL])?)'
return t
t_CPP_INTEGER = CPP_INTEGER
# Floating literal
t_CPP_FLOAT = r'((\d+)(\.\d+)(e(\+|-)?(\d+))? | (\d+)e(\+|-)?(\d+))([lL]|[fF])?'
# String literal
def t_CPP_STRING(t):
r'\"([^\\\n]|(\\(.|\n)))*?\"'
t.lexer.lineno += t.value.count("\n")
return t
# Character constant 'c' or L'c'
def t_CPP_CHAR(t):
r'(L)?\'([^\\\n]|(\\(.|\n)))*?\''
t.lexer.lineno += t.value.count("\n")
return t
# Comment
def t_CPP_COMMENT1(t):
r'(/\*(.|\n)*?\*/)'
ncr = t.value.count("\n")
t.lexer.lineno += ncr
# replace with one space or a number of '\n'
t.type = 'CPP_WS'; t.value = '\n' * ncr if ncr else ' '
return t
# Line comment
def t_CPP_COMMENT2(t):
r'(//.*?(\n|$))'
# replace with '/n'
t.type = 'CPP_WS'; t.value = '\n'
def t_error(t):
t.type = t.value[0]
t.value = t.value[0]
t.lexer.skip(1)
return t
import re
import copy
import time
import os.path
# -----------------------------------------------------------------------------
# trigraph()
#
# Given an input string, this function replaces all trigraph sequences.
# The following mapping is used:
#
# ??= #
# ??/ \
# ??' ^
# ??( [
# ??) ]
# ??! |
# ??< {
# ??> }
# ??- ~
# -----------------------------------------------------------------------------
_trigraph_pat = re.compile(r'''\?\?[=/\'\(\)\!<>\-]''')
_trigraph_rep = {
'=':'#',
'/':'\\',
"'":'^',
'(':'[',
')':']',
'!':'|',
'<':'{',
'>':'}',
'-':'~'
}
def trigraph(input):
return _trigraph_pat.sub(lambda g: _trigraph_rep[g.group()[-1]],input)
# ------------------------------------------------------------------
# Macro object
#
# This object holds information about preprocessor macros
#
# .name - Macro name (string)
# .value - Macro value (a list of tokens)
# .arglist - List of argument names
# .variadic - Boolean indicating whether or not variadic macro
# .vararg - Name of the variadic parameter
#
# When a macro is created, the macro replacement token sequence is
# pre-scanned and used to create patch lists that are later used
# during macro expansion
# ------------------------------------------------------------------
class Macro(object):
def __init__(self,name,value,arglist=None,variadic=False):
self.name = name
self.value = value
self.arglist = arglist
self.variadic = variadic
if variadic:
self.vararg = arglist[-1]
self.source = None
# ------------------------------------------------------------------
# Preprocessor object
#
# Object representing a preprocessor. Contains macro definitions,
# include directories, and other information
# ------------------------------------------------------------------
class Preprocessor(object):
def __init__(self,lexer=None):
if lexer is None:
lexer = lex.lexer
self.lexer = lexer
self.macros = { }
self.path = []
self.temp_path = []
# Probe the lexer for selected tokens
self.lexprobe()
tm = time.localtime()
self.define("__DATE__ \"%s\"" % time.strftime("%b %d %Y",tm))
self.define("__TIME__ \"%s\"" % time.strftime("%H:%M:%S",tm))
self.parser = None
# -----------------------------------------------------------------------------
# tokenize()
#
# Utility function. Given a string of text, tokenize into a list of tokens
# -----------------------------------------------------------------------------
def tokenize(self,text):
tokens = []
self.lexer.input(text)
while True:
tok = self.lexer.token()
if not tok: break
tokens.append(tok)
return tokens
# ---------------------------------------------------------------------
# error()
#
# Report a preprocessor error/warning of some kind
# ----------------------------------------------------------------------
def error(self,file,line,msg):
print("%s:%d %s" % (file,line,msg))
# ----------------------------------------------------------------------
# lexprobe()
#
# This method probes the preprocessor lexer object to discover
# the token types of symbols that are important to the preprocessor.
# If this works right, the preprocessor will simply "work"
# with any suitable lexer regardless of how tokens have been named.
# ----------------------------------------------------------------------
def lexprobe(self):
# Determine the token type for identifiers
self.lexer.input("identifier")
tok = self.lexer.token()
if not tok or tok.value != "identifier":
print("Couldn't determine identifier type")
else:
self.t_ID = tok.type
# Determine the token type for integers
self.lexer.input("12345")
tok = self.lexer.token()
if not tok or int(tok.value) != 12345:
print("Couldn't determine integer type")
else:
self.t_INTEGER = tok.type
self.t_INTEGER_TYPE = type(tok.value)
# Determine the token type for strings enclosed in double quotes
self.lexer.input("\"filename\"")
tok = self.lexer.token()
if not tok or tok.value != "\"filename\"":
print("Couldn't determine string type")
else:
self.t_STRING = tok.type
# Determine the token type for whitespace--if any
self.lexer.input(" ")
tok = self.lexer.token()
if not tok or tok.value != " ":
self.t_SPACE = None
else:
self.t_SPACE = tok.type
# Determine the token type for newlines
self.lexer.input("\n")
tok = self.lexer.token()
if not tok or tok.value != "\n":
self.t_NEWLINE = None
print("Couldn't determine token for newlines")
else:
self.t_NEWLINE = tok.type
self.t_WS = (self.t_SPACE, self.t_NEWLINE)
# Check for other characters used by the preprocessor
chars = [ '<','>','#','##','\\','(',')',',','.']
for c in chars:
self.lexer.input(c)
tok = self.lexer.token()
if not tok or tok.value != c:
print("Unable to lex '%s' required for preprocessor" % c)
# ----------------------------------------------------------------------
# add_path()
#
# Adds a search path to the preprocessor.
# ----------------------------------------------------------------------
def add_path(self,path):
self.path.append(path)
# ----------------------------------------------------------------------
# group_lines()
#
# Given an input string, this function splits it into lines. Trailing whitespace
# is removed. Any line ending with \ is grouped with the next line. This
# function forms the lowest level of the preprocessor---grouping into text into
# a line-by-line format.
# ----------------------------------------------------------------------
def group_lines(self,input):
lex = self.lexer.clone()
lines = [x.rstrip() for x in input.splitlines()]
for i in xrange(len(lines)):
j = i+1
while lines[i].endswith('\\') and (j < len(lines)):
lines[i] = lines[i][:-1]+lines[j]
lines[j] = ""
j += 1
input = "\n".join(lines)
lex.input(input)
lex.lineno = 1
current_line = []
while True:
tok = lex.token()
if not tok:
break
current_line.append(tok)
if tok.type in self.t_WS and '\n' in tok.value:
yield current_line
current_line = []
if current_line:
yield current_line
# ----------------------------------------------------------------------
# tokenstrip()
#
# Remove leading/trailing whitespace tokens from a token list
# ----------------------------------------------------------------------
def tokenstrip(self,tokens):
i = 0
while i < len(tokens) and tokens[i].type in self.t_WS:
i += 1
del tokens[:i]
i = len(tokens)-1
while i >= 0 and tokens[i].type in self.t_WS:
i -= 1
del tokens[i+1:]
return tokens
# ----------------------------------------------------------------------
# collect_args()
#
# Collects comma separated arguments from a list of tokens. The arguments
# must be enclosed in parenthesis. Returns a tuple (tokencount,args,positions)
# where tokencount is the number of tokens consumed, args is a list of arguments,
# and positions is a list of integers containing the starting index of each
# argument. Each argument is represented by a list of tokens.
#
# When collecting arguments, leading and trailing whitespace is removed
# from each argument.
#
# This function properly handles nested parenthesis and commas---these do not
# define new arguments.
# ----------------------------------------------------------------------
def collect_args(self,tokenlist):
args = []
positions = []
current_arg = []
nesting = 1
tokenlen = len(tokenlist)
# Search for the opening '('.
i = 0
while (i < tokenlen) and (tokenlist[i].type in self.t_WS):
i += 1
if (i < tokenlen) and (tokenlist[i].value == '('):
positions.append(i+1)
else:
self.error(self.source,tokenlist[0].lineno,"Missing '(' in macro arguments")
return 0, [], []
i += 1
while i < tokenlen:
t = tokenlist[i]
if t.value == '(':
current_arg.append(t)
nesting += 1
elif t.value == ')':
nesting -= 1
if nesting == 0:
if current_arg:
args.append(self.tokenstrip(current_arg))
positions.append(i)
return i+1,args,positions
current_arg.append(t)
elif t.value == ',' and nesting == 1:
args.append(self.tokenstrip(current_arg))
positions.append(i+1)
current_arg = []
else:
current_arg.append(t)
i += 1
# Missing end argument
self.error(self.source,tokenlist[-1].lineno,"Missing ')' in macro arguments")
return 0, [],[]
# ----------------------------------------------------------------------
# macro_prescan()
#
# Examine the macro value (token sequence) and identify patch points
# This is used to speed up macro expansion later on---we'll know
# right away where to apply patches to the value to form the expansion
# ----------------------------------------------------------------------
def macro_prescan(self,macro):
macro.patch = [] # Standard macro arguments
macro.str_patch = [] # String conversion expansion
macro.var_comma_patch = [] # Variadic macro comma patch
i = 0
while i < len(macro.value):
if macro.value[i].type == self.t_ID and macro.value[i].value in macro.arglist:
argnum = macro.arglist.index(macro.value[i].value)
# Conversion of argument to a string
if i > 0 and macro.value[i-1].value == '#':
macro.value[i] = copy.copy(macro.value[i])
macro.value[i].type = self.t_STRING
del macro.value[i-1]
macro.str_patch.append((argnum,i-1))
continue
# Concatenation
elif (i > 0 and macro.value[i-1].value == '##'):
macro.patch.append(('c',argnum,i-1))
del macro.value[i-1]
continue
elif ((i+1) < len(macro.value) and macro.value[i+1].value == '##'):
macro.patch.append(('c',argnum,i))
i += 1
continue
# Standard expansion
else:
macro.patch.append(('e',argnum,i))
elif macro.value[i].value == '##':
if macro.variadic and (i > 0) and (macro.value[i-1].value == ',') and \
((i+1) < len(macro.value)) and (macro.value[i+1].type == self.t_ID) and \
(macro.value[i+1].value == macro.vararg):
macro.var_comma_patch.append(i-1)
i += 1
macro.patch.sort(key=lambda x: x[2],reverse=True)
# ----------------------------------------------------------------------
# macro_expand_args()
#
# Given a Macro and list of arguments (each a token list), this method
# returns an expanded version of a macro. The return value is a token sequence
# representing the replacement macro tokens
# ----------------------------------------------------------------------
def macro_expand_args(self,macro,args):
# Make a copy of the macro token sequence
rep = [copy.copy(_x) for _x in macro.value]
# Make string expansion patches. These do not alter the length of the replacement sequence
str_expansion = {}
for argnum, i in macro.str_patch:
if argnum not in str_expansion:
str_expansion[argnum] = ('"%s"' % "".join([x.value for x in args[argnum]])).replace("\\","\\\\")
rep[i] = copy.copy(rep[i])
rep[i].value = str_expansion[argnum]
# Make the variadic macro comma patch. If the variadic macro argument is empty, we get rid
comma_patch = False
if macro.variadic and not args[-1]:
for i in macro.var_comma_patch:
rep[i] = None
comma_patch = True
# Make all other patches. The order of these matters. It is assumed that the patch list
# has been sorted in reverse order of patch location since replacements will cause the
# size of the replacement sequence to expand from the patch point.
expanded = { }
for ptype, argnum, i in macro.patch:
# Concatenation. Argument is left unexpanded
if ptype == 'c':
rep[i:i+1] = args[argnum]
# Normal expansion. Argument is macro expanded first
elif ptype == 'e':
if argnum not in expanded:
expanded[argnum] = self.expand_macros(args[argnum])
rep[i:i+1] = expanded[argnum]
# Get rid of removed comma if necessary
if comma_patch:
rep = [_i for _i in rep if _i]
return rep
# ----------------------------------------------------------------------
# expand_macros()
#
# Given a list of tokens, this function performs macro expansion.
# The expanded argument is a dictionary that contains macros already
# expanded. This is used to prevent infinite recursion.
# ----------------------------------------------------------------------
def expand_macros(self,tokens,expanded=None):
if expanded is None:
expanded = {}
i = 0
while i < len(tokens):
t = tokens[i]
if t.type == self.t_ID:
if t.value in self.macros and t.value not in expanded:
# Yes, we found a macro match
expanded[t.value] = True
m = self.macros[t.value]
if not m.arglist:
# A simple macro
ex = self.expand_macros([copy.copy(_x) for _x in m.value],expanded)
for e in ex:
e.lineno = t.lineno
tokens[i:i+1] = ex
i += len(ex)
else:
# A macro with arguments
j = i + 1
while j < len(tokens) and tokens[j].type in self.t_WS:
j += 1
if tokens[j].value == '(':
tokcount,args,positions = self.collect_args(tokens[j:])
if not m.variadic and len(args) != len(m.arglist):
self.error(self.source,t.lineno,"Macro %s requires %d arguments" % (t.value,len(m.arglist)))
i = j + tokcount
elif m.variadic and len(args) < len(m.arglist)-1:
if len(m.arglist) > 2:
self.error(self.source,t.lineno,"Macro %s must have at least %d arguments" % (t.value, len(m.arglist)-1))
else:
self.error(self.source,t.lineno,"Macro %s must have at least %d argument" % (t.value, len(m.arglist)-1))
i = j + tokcount
else:
if m.variadic:
if len(args) == len(m.arglist)-1:
args.append([])
else:
args[len(m.arglist)-1] = tokens[j+positions[len(m.arglist)-1]:j+tokcount-1]
del args[len(m.arglist):]
# Get macro replacement text
rep = self.macro_expand_args(m,args)
rep = self.expand_macros(rep,expanded)
for r in rep:
r.lineno = t.lineno
tokens[i:j+tokcount] = rep
i += len(rep)
del expanded[t.value]
continue
elif t.value == '__LINE__':
t.type = self.t_INTEGER
t.value = self.t_INTEGER_TYPE(t.lineno)
i += 1
return tokens
# ----------------------------------------------------------------------
# evalexpr()
#
# Evaluate an expression token sequence for the purposes of evaluating
# integral expressions.
# ----------------------------------------------------------------------
def evalexpr(self,tokens):
# tokens = tokenize(line)
# Search for defined macros
i = 0
while i < len(tokens):
if tokens[i].type == self.t_ID and tokens[i].value == 'defined':
j = i + 1
needparen = False
result = "0L"
while j < len(tokens):
if tokens[j].type in self.t_WS:
j += 1
continue
elif tokens[j].type == self.t_ID:
if tokens[j].value in self.macros:
result = "1L"
else:
result = "0L"
if not needparen: break
elif tokens[j].value == '(':
needparen = True
elif tokens[j].value == ')':
break
else:
self.error(self.source,tokens[i].lineno,"Malformed defined()")
j += 1
tokens[i].type = self.t_INTEGER
tokens[i].value = self.t_INTEGER_TYPE(result)
del tokens[i+1:j+1]
i += 1
tokens = self.expand_macros(tokens)
for i,t in enumerate(tokens):
if t.type == self.t_ID:
tokens[i] = copy.copy(t)
tokens[i].type = self.t_INTEGER
tokens[i].value = self.t_INTEGER_TYPE("0L")
elif t.type == self.t_INTEGER:
tokens[i] = copy.copy(t)
# Strip off any trailing suffixes
tokens[i].value = str(tokens[i].value)
while tokens[i].value[-1] not in "0123456789abcdefABCDEF":
tokens[i].value = tokens[i].value[:-1]
expr = "".join([str(x.value) for x in tokens])
expr = expr.replace("&&"," and ")
expr = expr.replace("||"," or ")
expr = expr.replace("!"," not ")
try:
result = eval(expr)
except StandardError:
self.error(self.source,tokens[0].lineno,"Couldn't evaluate expression")
result = 0
return result
# ----------------------------------------------------------------------
# parsegen()
#
# Parse an input string/
# ----------------------------------------------------------------------
def parsegen(self,input,source=None):
# Replace trigraph sequences
t = trigraph(input)
lines = self.group_lines(t)
if not source:
source = ""
self.define("__FILE__ \"%s\"" % source)
self.source = source
chunk = []
enable = True
iftrigger = False
ifstack = []
for x in lines:
for i,tok in enumerate(x):
if tok.type not in self.t_WS: break
if tok.value == '#':
# Preprocessor directive
# insert necessary whitespace instead of eaten tokens
for tok in x:
if tok.type in self.t_WS and '\n' in tok.value:
chunk.append(tok)
dirtokens = self.tokenstrip(x[i+1:])
if dirtokens:
name = dirtokens[0].value
args = self.tokenstrip(dirtokens[1:])
else:
name = ""
args = []
if name == 'define':
if enable:
for tok in self.expand_macros(chunk):
yield tok
chunk = []
self.define(args)
elif name == 'include':
if enable:
for tok in self.expand_macros(chunk):
yield tok
chunk = []
oldfile = self.macros['__FILE__']
for tok in self.include(args):
yield tok
self.macros['__FILE__'] = oldfile
self.source = source
elif name == 'undef':
if enable:
for tok in self.expand_macros(chunk):
yield tok
chunk = []
self.undef(args)
elif name == 'ifdef':
ifstack.append((enable,iftrigger))
if enable:
if not args[0].value in self.macros:
enable = False
iftrigger = False
else:
iftrigger = True
elif name == 'ifndef':
ifstack.append((enable,iftrigger))
if enable:
if args[0].value in self.macros:
enable = False
iftrigger = False
else:
iftrigger = True
elif name == 'if':
ifstack.append((enable,iftrigger))
if enable:
result = self.evalexpr(args)
if not result:
enable = False
iftrigger = False
else:
iftrigger = True
elif name == 'elif':
if ifstack:
if ifstack[-1][0]: # We only pay attention if outer "if" allows this
if enable: # If already true, we flip enable False
enable = False
elif not iftrigger: # If False, but not triggered yet, we'll check expression
result = self.evalexpr(args)
if result:
enable = True
iftrigger = True
else:
self.error(self.source,dirtokens[0].lineno,"Misplaced #elif")
elif name == 'else':
if ifstack:
if ifstack[-1][0]:
if enable:
enable = False
elif not iftrigger:
enable = True
iftrigger = True
else:
self.error(self.source,dirtokens[0].lineno,"Misplaced #else")
elif name == 'endif':
if ifstack:
enable,iftrigger = ifstack.pop()
else:
self.error(self.source,dirtokens[0].lineno,"Misplaced #endif")
else:
# Unknown preprocessor directive
pass
else:
# Normal text
if enable:
chunk.extend(x)
for tok in self.expand_macros(chunk):
yield tok
chunk = []
# ----------------------------------------------------------------------
# include()
#
# Implementation of file-inclusion
# ----------------------------------------------------------------------
def include(self,tokens):
# Try to extract the filename and then process an include file
if not tokens:
return
if tokens:
if tokens[0].value != '<' and tokens[0].type != self.t_STRING:
tokens = self.expand_macros(tokens)
if tokens[0].value == '<':
# Include <...>
i = 1
while i < len(tokens):
if tokens[i].value == '>':
break
i += 1
else:
print("Malformed #include <...>")
return
filename = "".join([x.value for x in tokens[1:i]])
path = self.path + [""] + self.temp_path
elif tokens[0].type == self.t_STRING:
filename = tokens[0].value[1:-1]
path = self.temp_path + [""] + self.path
else:
print("Malformed #include statement")
return
for p in path:
iname = os.path.join(p,filename)
try:
data = open(iname,"r").read()
dname = os.path.dirname(iname)
if dname:
self.temp_path.insert(0,dname)
for tok in self.parsegen(data,filename):
yield tok
if dname:
del self.temp_path[0]
break
except IOError:
pass
else:
print("Couldn't find '%s'" % filename)
# ----------------------------------------------------------------------
# define()
#
# Define a new macro
# ----------------------------------------------------------------------
def define(self,tokens):
if isinstance(tokens,(str,unicode)):
tokens = self.tokenize(tokens)
linetok = tokens
try:
name = linetok[0]
if len(linetok) > 1:
mtype = linetok[1]
else:
mtype = None
if not mtype:
m = Macro(name.value,[])
self.macros[name.value] = m
elif mtype.type in self.t_WS:
# A normal macro
m = Macro(name.value,self.tokenstrip(linetok[2:]))
self.macros[name.value] = m
elif mtype.value == '(':
# A macro with arguments
tokcount, args, positions = self.collect_args(linetok[1:])
variadic = False
for a in args:
if variadic:
print("No more arguments may follow a variadic argument")
break
astr = "".join([str(_i.value) for _i in a])
if astr == "...":
variadic = True
a[0].type = self.t_ID
a[0].value = '__VA_ARGS__'
variadic = True
del a[1:]
continue
elif astr[-3:] == "..." and a[0].type == self.t_ID:
variadic = True
del a[1:]
# If, for some reason, "." is part of the identifier, strip off the name for the purposes
# of macro expansion
if a[0].value[-3:] == '...':
a[0].value = a[0].value[:-3]
continue
if len(a) > 1 or a[0].type != self.t_ID:
print("Invalid macro argument")
break
else:
mvalue = self.tokenstrip(linetok[1+tokcount:])
i = 0
while i < len(mvalue):
if i+1 < len(mvalue):
if mvalue[i].type in self.t_WS and mvalue[i+1].value == '##':
del mvalue[i]
continue
elif mvalue[i].value == '##' and mvalue[i+1].type in self.t_WS:
del mvalue[i+1]
i += 1
m = Macro(name.value,mvalue,[x[0].value for x in args],variadic)
self.macro_prescan(m)
self.macros[name.value] = m
else:
print("Bad macro definition")
except LookupError:
print("Bad macro definition")
# ----------------------------------------------------------------------
# undef()
#
# Undefine a macro
# ----------------------------------------------------------------------
def undef(self,tokens):
id = tokens[0].value
try:
del self.macros[id]
except LookupError:
pass
# ----------------------------------------------------------------------
# parse()
#
# Parse input text.
# ----------------------------------------------------------------------
def parse(self,input,source=None,ignore={}):
self.ignore = ignore
self.parser = self.parsegen(input,source)
# ----------------------------------------------------------------------
# token()
#
# Method to return individual tokens
# ----------------------------------------------------------------------
def token(self):
try:
while True:
tok = next(self.parser)
if tok.type not in self.ignore: return tok
except StopIteration:
self.parser = None
return None
if __name__ == '__main__':
import ply.lex as lex
lexer = lex.lex()
# Run a preprocessor
import sys
f = open(sys.argv[1])
input = f.read()
p = Preprocessor(lexer)
p.parse(input,sys.argv[1])
while True:
tok = p.token()
if not tok: break
print(p.source, tok)

View file

@ -1,133 +0,0 @@
# ----------------------------------------------------------------------
# ctokens.py
#
# Token specifications for symbols in ANSI C and C++. This file is
# meant to be used as a library in other tokenizers.
# ----------------------------------------------------------------------
# Reserved words
tokens = [
# Literals (identifier, integer constant, float constant, string constant, char const)
'ID', 'TYPEID', 'INTEGER', 'FLOAT', 'STRING', 'CHARACTER',
# Operators (+,-,*,/,%,|,&,~,^,<<,>>, ||, &&, !, <, <=, >, >=, ==, !=)
'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'MODULO',
'OR', 'AND', 'NOT', 'XOR', 'LSHIFT', 'RSHIFT',
'LOR', 'LAND', 'LNOT',
'LT', 'LE', 'GT', 'GE', 'EQ', 'NE',
# Assignment (=, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=)
'EQUALS', 'TIMESEQUAL', 'DIVEQUAL', 'MODEQUAL', 'PLUSEQUAL', 'MINUSEQUAL',
'LSHIFTEQUAL','RSHIFTEQUAL', 'ANDEQUAL', 'XOREQUAL', 'OREQUAL',
# Increment/decrement (++,--)
'INCREMENT', 'DECREMENT',
# Structure dereference (->)
'ARROW',
# Ternary operator (?)
'TERNARY',
# Delimeters ( ) [ ] { } , . ; :
'LPAREN', 'RPAREN',
'LBRACKET', 'RBRACKET',
'LBRACE', 'RBRACE',
'COMMA', 'PERIOD', 'SEMI', 'COLON',
# Ellipsis (...)
'ELLIPSIS',
]
# Operators
t_PLUS = r'\+'
t_MINUS = r'-'
t_TIMES = r'\*'
t_DIVIDE = r'/'
t_MODULO = r'%'
t_OR = r'\|'
t_AND = r'&'
t_NOT = r'~'
t_XOR = r'\^'
t_LSHIFT = r'<<'
t_RSHIFT = r'>>'
t_LOR = r'\|\|'
t_LAND = r'&&'
t_LNOT = r'!'
t_LT = r'<'
t_GT = r'>'
t_LE = r'<='
t_GE = r'>='
t_EQ = r'=='
t_NE = r'!='
# Assignment operators
t_EQUALS = r'='
t_TIMESEQUAL = r'\*='
t_DIVEQUAL = r'/='
t_MODEQUAL = r'%='
t_PLUSEQUAL = r'\+='
t_MINUSEQUAL = r'-='
t_LSHIFTEQUAL = r'<<='
t_RSHIFTEQUAL = r'>>='
t_ANDEQUAL = r'&='
t_OREQUAL = r'\|='
t_XOREQUAL = r'\^='
# Increment/decrement
t_INCREMENT = r'\+\+'
t_DECREMENT = r'--'
# ->
t_ARROW = r'->'
# ?
t_TERNARY = r'\?'
# Delimeters
t_LPAREN = r'\('
t_RPAREN = r'\)'
t_LBRACKET = r'\['
t_RBRACKET = r'\]'
t_LBRACE = r'\{'
t_RBRACE = r'\}'
t_COMMA = r','
t_PERIOD = r'\.'
t_SEMI = r';'
t_COLON = r':'
t_ELLIPSIS = r'\.\.\.'
# Identifiers
t_ID = r'[A-Za-z_][A-Za-z0-9_]*'
# Integer literal
t_INTEGER = r'\d+([uU]|[lL]|[uU][lL]|[lL][uU])?'
# Floating literal
t_FLOAT = r'((\d+)(\.\d+)(e(\+|-)?(\d+))? | (\d+)e(\+|-)?(\d+))([lL]|[fF])?'
# String literal
t_STRING = r'\"([^\\\n]|(\\.))*?\"'
# Character constant 'c' or L'c'
t_CHARACTER = r'(L)?\'([^\\\n]|(\\.))*?\''
# Comment (C-Style)
def t_COMMENT(t):
r'/\*(.|\n)*?\*/'
t.lexer.lineno += t.value.count('\n')
return t
# Comment (C++-Style)
def t_CPPCOMMENT(t):
r'//.*\n'
t.lexer.lineno += 1
return t

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,74 +0,0 @@
# ply: ygen.py
#
# This is a support program that auto-generates different versions of the YACC parsing
# function with different features removed for the purposes of performance.
#
# Users should edit the method LParser.parsedebug() in yacc.py. The source code
# for that method is then used to create the other methods. See the comments in
# yacc.py for further details.
import os.path
import shutil
def get_source_range(lines, tag):
srclines = enumerate(lines)
start_tag = '#--! %s-start' % tag
end_tag = '#--! %s-end' % tag
for start_index, line in srclines:
if line.strip().startswith(start_tag):
break
for end_index, line in srclines:
if line.strip().endswith(end_tag):
break
return (start_index + 1, end_index)
def filter_section(lines, tag):
filtered_lines = []
include = True
tag_text = '#--! %s' % tag
for line in lines:
if line.strip().startswith(tag_text):
include = not include
elif include:
filtered_lines.append(line)
return filtered_lines
def main():
dirname = os.path.dirname(__file__)
shutil.copy2(os.path.join(dirname, 'yacc.py'), os.path.join(dirname, 'yacc.py.bak'))
with open(os.path.join(dirname, 'yacc.py'), 'r') as f:
lines = f.readlines()
parse_start, parse_end = get_source_range(lines, 'parsedebug')
parseopt_start, parseopt_end = get_source_range(lines, 'parseopt')
parseopt_notrack_start, parseopt_notrack_end = get_source_range(lines, 'parseopt-notrack')
# Get the original source
orig_lines = lines[parse_start:parse_end]
# Filter the DEBUG sections out
parseopt_lines = filter_section(orig_lines, 'DEBUG')
# Filter the TRACKING sections out
parseopt_notrack_lines = filter_section(parseopt_lines, 'TRACKING')
# Replace the parser source sections with updated versions
lines[parseopt_notrack_start:parseopt_notrack_end] = parseopt_notrack_lines
lines[parseopt_start:parseopt_end] = parseopt_lines
lines = [line.rstrip()+'\n' for line in lines]
with open(os.path.join(dirname, 'yacc.py'), 'w') as f:
f.writelines(lines)
print('Updated yacc.py')
if __name__ == '__main__':
main()