- Belt observer -> Content observer
- Content observers can now monitor any inventory and funnel transactions
- Stockpile switches no longer only access slots exposed to a specific side of an inventory
- Stockpile switches can now take a filter
- Brass tunnels once again have the ability to synchronize inputs among a chain
- Mechanical arms now have a range limitation
- Mechanical arms now wait with initialization until their area is fully loaded
- Chutes no longer ignore the direction of an attached fans air flow
- Chutes now render particles indicating their movement direction
- Chutes can now pull items up from belts or off the ground
- Fixed item model of shadow casing
- Fixed invisible quads under funnels when no casing is applied to the belt
- Belt mounted funnels can now be perpendicular to the belt theyre on
- Funnels can now transpose items like a hopper when facing down
- Item distribution across belts using brass tunnels can now be configured with a wrench
- Added new icons for the distribution options of arms and tunnels
- Removed obsolete code
- Fixed some weirdness with creative crates and funnels
- Reworked tileentity behaviours for inventory interaction
- Deployers no longer actively pull items from other inventories
- Some more work on basins
- Added a new inventory type wrapping an itemstack handler that automatically syncs the tile entity. It also implements IInventory for recipe shenanigans
- Held items of a deployer can now only be extracted by other blocks if it does not match the filter
- Fixed excess items not able to be extracted from deployers
- Removed some things
- Funnels no longer actively transpose items between chutes and inventories unless they are vertical
- Chutes can now active pull and insert items from/to inventories above/below them
- Fixed upright items rendering inconsistently between belt and depot
- Fixed various timing and sync issues with the spout
- Added a recipe type for spout filling
- Fixed more co-modification on belts
- Item and fluid nbt tags in recipes are now data-generated as json objects rather than strings
- Transported item processing can now leave items behind
- Transported item processing now has more meaningful result data
- Tweaked spout animation
- Fixed cullfaces on spout model
- add a dev utility that allows us to force-unload chunks
- move mechanical arm scrollbox
- fix oxidizing blocks trying to access a blockstate from unloaded chunks when on the border
- Expanded the RecipeProvider infrastructure
- Migrated mechanical crafting recipes to generated
- Migrated cooking recipes to generated
- Fixed missing particles on vertical motor model
- Adjusted a few recipes
- Reworked and cleaned up Create's ProcessingRecipes
- Prepared ProcessingRecipes for fluid ingredients and outputs
- Added datagen infrastructure to ProcessingRecipes
- Migrated all hand-written ProcessingRecipes to generated
- Removed scrollinput on mixers
- Fixed recipe lookup cache not invalidating on datapack reload
- Removed "catalyst" ingredients
- Reduced ambient dripping particles of fluid pipes
- Fixed reversed uvs on encased fans
- Fixed tile entities not being added to contraptions client-side
- Added encased and non-opaque versions of the fluid pipe.
- Added new generic te behaviour across pipe blocks for their rims/attachment models
- Pipes and pumps now render a little drain cap when connected to a fluid inventory
- Implemented reworked chute models by Kryppers
- Implemented new basin model by Kryppers
- Chutes now have proper selection bounds
- Some minor texture & model touch-ups
- Fixed symmetry wand position in its GUI
- Fixed some inconsistencies with a tanks' fluidhandler invalidation when resized
- Patched crashes in present fluid handling of the basin
- Tanks now slightly shade horizontal faces of the contained liquid
- Tanks no longer resend data every tick when filled gradually
- Introduced a new lerped value type with better design decisions
- Refactored Smart tileentity serialization to better support custom overrides in contained behaviours
- Pumps propagate flows in the pipe networks in front and behind itself.
- Pumps collect all possible in and outputs across the reachable pipe graph as endpoints
- Flows move across multiple branches of a pipe network when both are equally viable
- Open-ended pipes are treated as endpoints and leak fluid into and out of a block space
- Open endpoints serialize stateful information about fluid units gathered and held at the interface
- Open endpoints turn a fluid block into 1000 fluid units and back
- Open endpoints undo their transaction when their flow changes from pull to push
- Open endpoints cannot pull fluids back when a full liquid block was not placed yet
- Open endpoints waterlog blocks when the provided fluid is water
- A collision response is triggered when different types of fluids meet at open endpoints
- Fluids are transferred instantly by the throughput of a completed flow per tick
- Pumps cut flows when vital pipes are removed
- Pumps do not lose progress of finished flows when an unrelated part of the pipe network changes
- Pumps do not lose progress of finished flows when reversed
- Pumps distribute their throughput across available input flows evenly
- Pumps distribute gathered input fluid across outputs evenly
- Pumps expose furthest reachable pipefaces to other pumps for chained transfer
- Chained pumps with fully overlapping flow sections provide their endpoints at the entrance of the other pump
- Chained pumps with overlapping flow sections participate in two shared endpoints, one for each pump dominating the contested region
- Chained pumps with overlapping flow only transfer via the optimal of the two possible endpoints based on their speeds
- Chained pumps of equal speed pick one of the two available endpoints deterministically
- Pumps transfer without flows when no pipe is between the pump and the endpoint
- Pumps serialize and recover stateful information about held fluid units at open endpoints
- Chained pumps do not actively transfer when both are partaking with push flows (or both pulling)
- A pull flow originating from an inter-pump endpoint only commences when the corresponding push flow is completed
- Chained pumps re-determine the optimal flow when the speed of one is changed at runtime
- Throughput of chained pumps is determined by their weakest link in terms of speed
- Endpoints created for chained pumps is treated equally to other available endpoints when fluid is distributed
- Pipes do not contain a physical amount of fluid.
- Pipes never hold serialized vital stateful information about fluid transfer.
- Pipes synchronize local flow progress and fluid type to clients
- Flows in a pipe progress with the speed of the network flow
- A networks flow speed depends on the speed of the aggregated pump
- Pipe flows of different flow graphs of different pumps interact with each other
- A collision response is triggered when two different types of fluid meet within a pipe
- Pipes spawn particles to illustrate contained flows/liquids of flows
- The fluid transfer role is exposed through a TE behaviour with some callbacks and properties
- Open endpoints show particles when interacting with in-world fluids
- buffering SeatMovementBehaviour
- changed visibility of AllMovementBehaviours.addMovementBehaviour(ResourceLocation, MovementBehaviour) to public for easier mod compat
- added console warn message when something tries to register more than one movement behaviour per block